Effect of monovalent salt on cationic lipid membranes as revealed by molecular dynamics simulations.

نویسندگان

  • Andrey A Gurtovenko
  • Markus Miettinen
  • Mikko Karttunen
  • Ilpo Vattulainen
چکیده

An atomic-scale understanding of cationic lipid membranes is required for development of gene delivery agents based on cationic liposomes. To address this problem, we recently performed molecular dynamics (MD) simulations of mixed lipid membranes comprised of cationic dimyristoyltrimethylammonium propane (DMTAP) and zwitterionic dimyristoylphosphatidylcholine (DMPC) (Biophys. J. 2004, 86, 3461-3472). Given that salt ions are always present under physiological conditions, here we focus on the effects of monovalent salt (NaCl) on cationic (DMPC/DMTAP) membranes. Using atomistic MD simulations, we found that salt-induced changes in membranes depend strongly on their composition. When the DMTAP mole fraction is small (around 6%), the addition of monovalent salt leads to a considerable compression of the membrane and to a concurrent enhancement of the ordering of lipid acyl chains. That is accompanied by reorientation of phosphatidylcholine headgroups in the outward normal direction and slight changes in electrostatic properties. We attribute these changes to complexation of DMPC lipids with Na(+) ions which penetrate deep into the membrane and bind to the carbonyl region of the DMPC lipids. In contrast, at medium and high molar fractions of cationic DMTAP (50 and 75%) a substantial positive surface charge density of the membranes prevents the binding of Na(+) ions, making such membranes almost insensitive to monovalent salt. Finally, we compare our results to the Poisson-Boltzmann theory. With the exception of the immediate vicinity of the bilayer plane, we found excellent agreement with the theory. This is as expected since unlike in the theoretical description the surface is now structured due to its atomic scale nature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of NaCl and KCl on phosphatidylcholine and phosphatidylethanolamine lipid membranes: insight from atomic-scale simulations for understanding salt-induced effects in the plasma membrane.

To gain a better understanding of how monovalent salt under physiological conditions affects plasma membranes, we have performed 200 ns atomic-scale molecular dynamics simulations of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) lipid bilayers. These two systems provide representative models for the outer and inner leaflets of the plasma membrane, respectively. The implications of ...

متن کامل

Molecular Insight into the Mutual Interactions of Two Transmembrane Domains of Human Glycine Receptor (TM23-GlyR), with the Lipid Bilayers

Appearing as a computational microscope, MD simulation can ‘zoom in’ to atomic resolution to assess detailed interactions of a membrane protein with its surrounding lipids, which play important roles in the stability and function of such proteins. This study has employed the molecular dynamics (MD) simulations, to determine the effect of added DMPC or DMTAP molecules on the structure of D...

متن کامل

Monovalent Ions and Water Dipoles in Contact with Dipolar Zwitterionic Lipid Headgroups-Theory and MD Simulations

The lipid bilayer is a basic building block of biological membranes and can be pictured as a barrier separating two compartments filled with electrolyte solution. Artificial planar lipid bilayers are therefore commonly used as model systems to study the physical and electrical properties of the cell membranes in contact with electrolyte solution. Among them the glycerol-based polar phospholipid...

متن کامل

Molecular Dynamics Simulations on Polymeric Nanocomposite Membranes Designed to Deliver Pipobromane Anticancer Drug

Three chitosan (CS), polyethylene glycol (PEG) and polylactic acid (PLA) nanocomposite systems containing SiO2 nanoparticles and water molecules were designed by molecular dynamics (MD) simulations to deliver pipobromane (PIP) anticancer drug in order to discover the most appropriate drug delivery system (DDS) in aqueous medium which was analogous to the human body. The density for the CS matri...

متن کامل

Intrinsic potential of cell membranes: opposite effects of lipid transmembrane asymmetry and asymmetric salt ion distribution.

Using atomic-scale molecular dynamics simulations, we consider the intrinsic cell membrane potential that is found to originate from a subtle interplay between lipid transmembrane asymmetry and the asymmetric distribution of monovalent salt ions on the two sides of the cell membrane. It turns out that both the asymmetric distribution of phosphatidylcholine (PC) and phosphatidylethanolamine (PE)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 109 44  شماره 

صفحات  -

تاریخ انتشار 2005