Wavelet-Based Compressive Sensing for Point Scatterers

نویسندگان

  • Gregory WILSENACH
  • Amit Kumar MISHRA
چکیده

Compressive Sensing (CS) allows for the sampling of signals at well below the Nyquist rate but does so, usually, at the cost of the suppression of lower amplitude signal components. Recent work suggests that important information essential for recognizing targets in the radar context is contained in the side-lobes as well, which are often suppressed by CS. In this paper we extend existing techniques and introduce new techniques both for improving the accuracy of CS reconstructions and for improving the separability of scenes reconstructed using CS. We investigate the Discrete Wavelet Transform (DWT), and show how the use of the DWT as a representation basis may improve the accuracy of reconstruction generally. Moreover, we introduce the concept of using multiple wavelet-based reconstructions of a scene, given only a single physical observation, to derive reconstructions that surpass even the best wavelet-based CS reconstructions. Lastly, we specifically consider the effect of the wavelet-based reconstruction on classification. This is done indirectly by comparing outputs of different algorithms using a variety of separability measures. We show that various wavelet-based CS reconstructions are substantially better than conventional CS approaches at inducing (or preserving) separability, and hence may be more useful in classification applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tree-Structure Bayesian Compressive Sensing for Video

A Bayesian compressive sensing framework is developed for video reconstruction based on the color coded aperture compressive temporal imaging (CACTI) system. By exploiting the three dimension (3D) tree structure of the wavelet and Discrete Cosine Transformation (DCT) coefficients, a Bayesian compressive sensing inversion algorithm is derived to reconstruct (up to 22) color video frames from a s...

متن کامل

Compressive Sensing Based Image Reconstruction using Wavelet Transform

Compressive Sensing is a novel technique where reconstruction of an image can be done with less number of samples than conventional Nyquist theorem suggests. The signal will pass through sensing matrix wavelet transformation to make the signal sparser enough which is a criterion for compressive sensing. The low frequency and high frequency components of an image have different kind of informati...

متن کامل

Wavelet Based Compressive Sensing Techniques for Image Compression

Compressive sensing (CS) exploits the sparsity of the commonly encountered signals and provides the data compression at the first step of the image acquisition. In this paper, performance of various wavelet based CS techniques has been analysed. It is based on the concept that small collections of non-adaptive linear projections of a sparse signal contain enough information for its effective re...

متن کامل

Compressive Spectrum Sensing for Cognitive Radio Networks

............................................................................................................................... 3 RÉSUME .................................................................................................................................... 5 ACKNOWLEDGEMENT .......................................................................................................... 7 ...

متن کامل

Recovery of Seismic Wavefields Based on Compressive Sensing by an l1-Norm Constrained Trust Region Method and the Piecewise Random Sub-sampling

SUMMARY Due to the influence of variations in landform, geophysical data acquisition is usually sub-sampled. Reconstruction of the seismic wavefield from sub-sampled data is an ill-posed inverse problem. Compressive sensing can be used to recover the original geophysical data from the sub-sampled data. In this paper, we consider the wavefield reconstruction problem as a com-pressive sensing and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015