Methyl pyruvate stimulates pancreatic beta-cells by a direct effect on KATP channels, and not as a mitochondrial substrate.
نویسندگان
چکیده
In pancreatic beta-cells, methyl pyruvate is a potent secretagogue and is widely used to study stimulus-secretion coupling. In contrast with pyruvate, which barely stimulates insulin secretion, methyl pyruvate was suggested to act as an effective mitochondrial substrate. We show that methyl pyruvate elicited electrical activity in the presence of 0.5 mM glucose, in contrast with pyruvate. Accordingly, methyl pyruvate increased the cytosolic free Ca(2+) concentration after an initial decrease, similar to glucose. The initial decrease was inhibited by thapsigargin, suggesting that methyl pyruvate stimulates ATP production. This assumption is supported by the observation that methyl pyruvate hyperpolarized the mitochondrial membrane potential, similar to glucose. However, in contrast with glucose, methyl pyruvate even slightly decreased NAD(P)H autofluorescence and did not influence ATP production or the ATP/ADP ratio. This observation questions the suggestion that methyl pyruvate acts as a powerful mitochondrial substrate. The finding that methyl pyruvate directly inhibited a cation current across the inner membrane of Jurkat T-lymphocyte mitochondria suggests that this metabolite may increase ATP production in beta-cells by activating the respiratory chains without providing reduction equivalents. We conclude that this mechanism may account for a slight and transient increase in ATP production. We further show that methyl pyruvate inhibited the K(ATP) current measured in the standard whole-cell configuration, an effect that was at least partly antagonized by diazoxide. Accordingly, single-channel currents in inside-out patches were blocked by methyl pyruvate. We conclude that inhibition of K(ATP) channels, and not activation of metabolism, mediates the induction of electrical activity in pancreatic beta-cells by methyl pyruvate.
منابع مشابه
P2Y purinergic potentiation of glucose-induced insulin secretion and pancreatic beta-cell metabolism.
Purine nucleotides and their analogs increase insulin secretion through activation of pancreatic beta-cell P2Y receptors. The present study aimed at determining the role of glucose metabolism in the response to P2Y agonists and whether ATP-activated K+ channels (KATP channels) are involved in this response. The experiments were performed in the rat isolated pancreas, perfused with a Krebs-bicar...
متن کامل-Cell Secretory Products Activate -Cell ATP-Dependent Potassium Channels to Inhibit Glucagon Release
Glucagon, secreted from islet -cells, mobilizes liver glucose. During hyperglycemia, glucagon secretion is inhibited by paracrine factors from other islet cells, but in type 1 and type 2 diabetic patients, this suppression is lost. We investigated the effects of -cell secretory products zinc and insulin on isolated rat -cells, intact islets, and perfused pancreata. Islet glucagon secretion was ...
متن کاملRegulation of pancreatic beta-cell mitochondrial metabolism: influence of Ca2+, substrate and ADP.
To gain insight into the regulation of pancreatic beta-cell mitochondrial metabolism, the direct effects on respiration of different mitochondrial substrates, variations in the ATP/ADP ratio and free Ca2+ were examined using isolated mitochondria and permeabilized clonal pancreatic beta-cells (HIT). Respiration from pyruvate was high and not influenced by Ca2+ in State 3 or under various redox ...
متن کاملActivation of ATP-sensitive K+ (K(ATP)) channels by H2O2 underlies glutamate-dependent inhibition of striatal dopamine release.
In many cells, ATP-sensitive K+ channels (KATP channels) couple metabolic state to excitability. In pancreatic beta cells, for example, this coupling regulates insulin release. Although KATP channels are abundantly expressed in the brain, their physiological role and the factors that regulate them are poorly understood. One potential regulator is H2O2. We reported previously that dopamine (DA) ...
متن کاملNitric oxide opens ATP-sensitive K+ channels through suppression of phosphofructokinase activity and inhibits glucose-induced insulin release in pancreatic beta cells
Nitric oxide (NO) is known to be a potent messenger in the intracellular signal transduction system in many tissues. In pancreatic beta cells, NO has been reported to be formed from L-arginine through NO synthase. To elucidate the effect of NO on insulin secretion and to investigate the intracellular mechanism of its effect, we have used sodium nitroprusside (SNP) as a NO donor. SNP inhibited g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Biochemical journal
دوره 368 Pt 3 شماره
صفحات -
تاریخ انتشار 2002