Modeling Differences in the Time-Frequency Representation of EEG Signals Through HMM’s for Classification of Imaginary Motor Tasks
نویسندگان
چکیده
Brain Computer interfaces are systems that allow the control of external devices using the information extracted from the brain signals. Such systems find applications in rehabilitation, as an alternative communication channel and in multimedia applications for entertainment and gaming. In this work, a new approach based on the Time-Frequency (TF) distribution of the signal power, obtained by autoregressive methods and the use Hidden Markov models (HMM) is developed. This approach take into account the changes of power on different frequency bands with time. For that purpose HMM’s are used to modeling the changes in the power during the execution of two different motor tasks. The use of TF methods involves a problem related to the selection of the frequency bands that can lead to over fitting (due to the course of dimensionality) as well as problems related to the selection of the model parameters. These problems are solved in this work by combining two methods for feature selection: Fisher Score and Sequential Floating Forward Selection. The results are compared to the three top results of the BCI competition IV. It is shown here that the proposed method over perform those other methods in four subjects and the average over all the subjects equals the one obtained by the winner algorithm of the competition.
منابع مشابه
A Latent Discriminative Model-Based Approach for Classification of Imaginary Motor Task from EEG Data
We consider the problem of classification of imaginary motor tasks from electroencephalography (EEG) data for brain-computer interfaces (BCIs) and propose a new approach based on hidden conditional random fields (HCRFs). HCRFs are discriminative graphical models that are attractive for this problem because they (1) exploit the temporal structure of EEG; (2) include latent variables that can be ...
متن کاملA latent discriminative model-based approach for classification of imaginary motor tasks from EEG data.
We consider the problem of classification of imaginary motor tasks from electroencephalography (EEG) data for brain-computer interfaces (BCIs) and propose a new approach based on hidden conditional random fields (HCRFs). HCRFs are discriminative graphical models that are attractive for this problem because they (1) exploit the temporal structure of EEG; (2) include latent variables that can be ...
متن کاملClassification of EEG-based motor imagery BCI by using ECOC
AbstractAccuracy in identifying the subjects’ intentions for moving their different limbs from EEG signals is regarded as an important factor in the studies related to BCI. In fact, the complexity of motor-imagination and low amount of signal-to-noise ratio for EEG signal makes this identification as a difficult task. In order to overcome these complexities, many techniques such as variou...
متن کاملA Joint Semantic Vector Representation Model for Text Clustering and Classification
Text clustering and classification are two main tasks of text mining. Feature selection plays the key role in the quality of the clustering and classification results. Although word-based features such as term frequency-inverse document frequency (TF-IDF) vectors have been widely used in different applications, their shortcoming in capturing semantic concepts of text motivated researches to use...
متن کاملMental Arithmetic Task Recognition Using Effective Connectivity and Hierarchical Feature Selection From EEG Signals
Introduction: Mental arithmetic analysis based on Electroencephalogram (EEG) signal for monitoring the state of the user’s brain functioning can be helpful for understanding some psychological disorders such as attention deficit hyperactivity disorder, autism spectrum disorder, or dyscalculia where the difficulty in learning or understanding the arithmetic exists. Most mental arithmetic recogni...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011