Imaging of multidrug resistance in cancer
نویسندگان
چکیده
Primary intrinsic and/or acquired multidrug resistance (MDR) is the main obstacle to successful cancer treatment. Functional molecular imaging of MDR in cancer using single photon or positron emitters may be helpful to identify multidrug-resistant tumours and predict not only those patients who are resistant to treatment, with a clinically unfavourable prognosis, but also those who are susceptible to the development of drug toxicity or even certain tumours . Variations in the mdr1 gene product may directly affect the therapeutic effectiveness, and single nucleotide polymorphisms for the mdr1 gene may be associated with altered oral bioavailability of MDR1 substrates, drug resistance, and a susceptibility to some human diseases. The challenge of translating the concept of MDR modulation in vivo involves a complex cellular interplay between both malignant and normal cells. Integration and correlation of functional single photon emission tomography or positron emission tomography imaging findings with mdr1 genotype and clinical data may contribute to efficient management by selecting cancer patients with the appropriate molecular phenotype for maximal individual therapeutic benefit, as well as those who are non-responders. This review describes a role for functional imaging of classical mechanisms of MDR with an emphasis on readily available [(99m)Tc]MIBI scintigraphy. MIBI scintigraphy has been shown to be a non-invasive cost-effective in vivo assay of ATP-binding cassette transporters associated with MDR in cancer, including P-glycoprotein, multidrug-resistant protein 1 and breast cancer resistant protein. New imaging agents for molecular targets such as vascular endothelial growth factor and HER2 receptors, may potentially be combined with MDR imaging substrates to more accurately predict the therapeutic response to anticancer drugs, guiding individualised treatment while minimising the economic health costs of ineffective therapy in an era of personalised medicine.
منابع مشابه
Molecular mechanisms involved in multidrug resistance in breast cancer therapy
Breast cancer is the most prevalent cancer in women. Chemotherapy is the main strategy in the treatment of this disease especially in the advanced form of the disease. Despite the recent progress in the development of new chemotherapy, the effectiveness of these drugs has dramatically reduced due to multidrug resistance. The phenotype of multidrug resistance (MDR) can occur through different me...
متن کاملEffects of Salinispora derived metabolites against multidrug resistance, an in-silico study
Background: Multidrug resistance (MDR) is known to defeat most chemotherapies as one of the main anticancer strategies. The role of overexpression/overactivation of ABC transporters, especially P-glycoprotein (P-gp), in the development of chemotherapy has long been demonstrated. Salinispora is a marine actinomycete genus known for the production of novel bioactive metabolites. Methods: In this...
متن کاملCelecoxib Up Regulates the Expression of Drug Efflux Transporter ABCG2 in Breast Cancer Cell Lines
Elevated expression of the drug efflux transporter ABCG2 seems to correlate with multidrug resistance of cancer cells. Specific COX-2 inhibitor celecoxib has been shown to enhance the sensitivity of cancer cells to anticancer drugs. To clarify whether ABCG2 inhibition is involved in the sensitizing effect of celecoxib, we investigated whether the expression of ABCG2 in breast cancer cell lines ...
متن کاملCelecoxib Up Regulates the Expression of Drug Efflux Transporter ABCG2 in Breast Cancer Cell Lines
Elevated expression of the drug efflux transporter ABCG2 seems to correlate with multidrug resistance of cancer cells. Specific COX-2 inhibitor celecoxib has been shown to enhance the sensitivity of cancer cells to anticancer drugs. To clarify whether ABCG2 inhibition is involved in the sensitizing effect of celecoxib, we investigated whether the expression of ABCG2 in breast cancer cell lines ...
متن کاملMultidrug Resistance in Infants and Children
Bacterial infections may cause disease and death. Infants and children are often subject to bacterial infections. Antimicrobials kill bacteria protecting the infected patients andreducing the risk of morbidity and mortality caused by bacteria. The antibiotics may lose their antibacterial activity when they become resistant to a bacteria. The resistance to different antibiotics in a bacteria is ...
متن کاملInorganic Nanocarriers Overcoming Multidrug Resistance for Cancer Theranostics
Cancer multidrug resistance (MDR) could lead to therapeutic failure of chemotherapy and radiotherapy, and has become one of the main obstacles to successful cancer treatment. Some advanced drug delivery platforms, such as inorganic nanocarriers, demonstrate a high potential for cancer theranostic to overcome the cancer-specific limitation of conventional low-molecular-weight anticancer agents a...
متن کامل