WIP Remodeling Actin behind the Scenes: How WIP Reshapes Immune and Other Functions

نویسندگان

  • Elad Noy
  • Sophia Fried
  • Omri Matalon
  • Mira Barda-Saad
چکیده

Actin polymerization is a fundamental cellular process regulating immune cell functions and the immune response. The Wiskott-Aldrich syndrome protein (WASp) is an actin nucleation promoting factor, which is exclusively expressed in hematopoietic cells, where it plays a key regulatory role in cytoskeletal dynamics. WASp interacting protein (WIP) was first discovered as the binding partner of WASp, through the use of the yeast two hybrid system. WIP was later identified as a chaperone of WASp, necessary for its stability. Mutations occurring at the WASp homology 1 domain (WH1), which serves as the WIP binding site, were found to cause the Wiskott-Aldrich syndrome (WAS) and X-linked thrombocytopenia (XLT). WAS manifests as an immune deficiency characterized by eczema, thrombocytopenia, recurrent infections, and hematopoietic malignancies, demonstrating the importance of WIP for WASp complex formation and for a proper immune response. WIP deficiency was found to lead to different abnormalities in the activity of various lymphocytes, suggesting differential cell-dependent roles for WIP. Additionally, WIP deficiency causes cellular abnormalities not found in WASp-deficient cells, indicating that WIP fulfills roles beyond stabilizing WASp. Indeed, WIP was shown to interact with various binding partners, including the signaling proteins Nck, CrkL and cortactin. Recent studies have demonstrated that WIP also takes part in non immune cellular processes such as cancer invasion and metastasis, in addition to cell subversion by intracellular pathogens. Understanding of numerous functions of WIP can enhance our current understanding of activation and function of immune and other cell types.

برای دسترسی به متن کامل این مقاله و 10 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

WIP participates in actin reorganization and ruffle formation induced by PDGF.

Platelet-derived growth factor (PDGF) is a chemotactic factor for fibroblasts that triggers actin cytoskeleton reorganization by increasing the level of GTP-Rac, the activated form of a small Rho family GTPase. GTP-Rac induces membrane ruffling and lamellipodium formation that are required for adhesion, migration and macropinocytosis, among other functions. We have shown that WIP interacts with...

متن کامل

Cortactin Interacts with WIP in Regulating Arp2/3 Activation and Membrane Protrusion

BACKGROUND Modulation of actin cytoskeleton assembly is an integral step in many cellular events. A key regulator of actin polymerization is Arp2/3 complex. Cortactin, an F-actin binding protein that localizes to membrane ruffles, is an activator of Arp2/3 complex. RESULTS A yeast two-hybrid screen revealed the interaction of the cortactin Src homology 3 (SH3) domain with a peptide fragment d...

متن کامل

WIP Provides an Essential Link between Nck and N-WASP during Arp2/3-Dependent Actin Polymerization

Nck links phosphotyrosine-based signaling to Arp2/3-dependent actin polymerization during many different cellular processes as well as actin-based motility of enteropathogenic Escherichia coli (EPEC), vaccinia, and other vertebrate poxviruses by interacting with N-WASP/WASP. Nck also binds WASP-interacting protein (WIP), which inhibits the ability of N-WASP to activate the Arp2/3 complex until ...

متن کامل

WIP is a negative regulator of neuronal maturation and synaptic activity.

Wiskott-Aldrich syndrome protein (WASP) -interacting protein (WIP) is an actin-binding protein involved in the regulation of actin polymerization in cells, such as fibroblasts and lymphocytes. Despite its recognized function in non-neuronal cells, the role of WIP in the central nervous system has not been examined previously. We used WIP-deficient mice to examine WIP function both in vivo and i...

متن کامل

WIP Regulates the Stability and Localization of WASP to Podosomes in Migrating Dendritic Cells

The Wiskott-Aldrich Syndrome protein (WASP) is an adaptor protein that is essential for podosome formation in hematopoietic cells. Given that 80% of identified Wiskott-Aldrich Syndrome patients result from mutations in the binding site for WASP-interacting-protein (WIP), we examined the possible role of WIP in the regulation of podosome architecture and cell motility in dendritic cells (DCs). O...

متن کامل

افزودن به منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی راحت تر خواهید کرد

برای دسترسی به متن کامل این مقاله و 10 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2012