مقایسه شبکه عصبی مصنوعی و مدل HEC – HMS در برآورد بارش – رواناب در حوضه آبریز رودخانه اعظم هرات

نویسندگان

  • اژدرپور, مهران
چکیده

یکی از روشهایی که در زمینه های مختلف علمی استفاده شده و می تواند فرایند پیچیده بارش – رواناب را شبیه سازی کند، استفاده از مدلهای شبکه عصبی مصنوعی است. هدف این تحقیق بررسی کارآمدی شبکه های عصبی مصنوعی در شبیه سازی فرایند بارش- رواناب و مقایسه نتایج آنها با مدل HEC – HMS در حوضه آبریز رودخانه اعظم هرات در استان یزد است. داده های مورد استفاده در این تحقیق شامل بارندگی روزانه به همراه دبی روزانه و لحظه ای رودخانه مزبور طی یک دوره آماری 24 ساله (1361-1385) است. ابتدا بارش نگارهای چندین پیشامد بارندگی و آبنمودهای رواناب آنها مبنای کار قرار گرفت. سپس شبکه عصبی مصنوعی با الگوریتم پس انتشار خطا و استفاده از تابع تبدیل سیگموئید آموزش داده شد. معیار گزینش پارامترهای شبکه در مرحله آموزش، تولید کمترین مقدار (RMSE) در خروجی های آن بود. مدل HMS به روش پیشنهادی SCS و شماره منحنی (CN) اجرا شد. برای ارزیابی کارایی شبکه عصبی مصنوعی، داده های شبیه سازی شده و مشاهده ای مربوط به کل دبی و حجم رواناب، دبیها و زمانهای اوج مقایسه شدند. یافته های تحقیق نشان می دهد که ضرایب همبستگی کل دبیهای مشاهده ای و برآورد شده شبکه عصبی 978/0 و مدل HMS 823/0 است و خروجی شبکه نسبت به خروجی مدل از دقت بیشتری برخوردار است. ضرایب همبستگی مربوط به حجم رواناب برآورد شده و دبی اوج به ترتیب برای شبکه 986/0 و 981/0 و برای مدل 979/0 و 972/0 به دست می آید. مقایسه زمان اوج آبنمودهای واقعی با موارد پیش بینی شده ANN و HMS نشان می دهد که دقت شبکه در این مورد نیز به مراتب از دقت مدل استفاده شده بیشتر است و ضرایب همبستگی شبکه 833/0 و مدل 491/0 برآورد می شود. مقایسه عملکرد شبکه و مدل به کار رفته نشان می دهد که در تمام پارامترهای مورد نظر دقت شبکه بیشتر از مدل HMS است. با انجام آزمون t با سطوح احتمال 95 و 99 درصد، اختلاف معنی داری میان اندازه های مشاهده ای و شبیه سازی شده مربوط به همه پارامترهای مورد بررسی مشاهده نشد.

برای دانلود باید عضویت طلایی داشته باشید

برای دسترسی به متن کامل این مقاله و 10 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

تحلیل حساسیت و مقایسه عملکرد سه مدل مفهومی HBV، IHARCES و HEC-HMS در شبیه‌سازی بارش-رواناب پیوسته در حوضه‌‌های نیمه‌خشک (بررسی موردی: حوضه اعظم هرات-یزد)

بخش وسیعی از کشور ما در قسمت خشک و نیمه‌خشک قرار دارد.. در این مناطق بارش معمولأ ناچیز و نامنظم است و تغییرات شدید مکانی و زمانی دارد که تأثیر زیادی بر چرخه هیدرولوژیکی و منابع آب دارد. شناخت هیدرولوژی مناطق خشک لازمه شناخت این محیط‌‌ها و تشخیص آسیب‌پذیری آنها به تغییر است. مدیریت موثر منابع آب ضروری است که نیازمند سامانه پشتیبانی تصمیم‌‌گیری شامل ابزارهای مدل‌سازی است. انتخاب مدل، نیاز به تشخی...

متن کامل

شبیه سازی فرآیند بارش- رواناب با بکارگیری شبکه عصبی مصنوعی (ANN) و مدل HEC-HMS ( مطالعه موردی حوزه آبخیز کسیلیان)

برای شبیه سازی فرآیند بارش - رواناب در سطح حوزه آبخیز کسیلیان با مساحت حدود 68 کیلومترمربع واقع در شمال ایران، مدل (HEC-HMS) و روش شبکه عصبی مصنوعی(ANN) بکار گرفته شد. شبکه عصبی دارای قابلیت بالایی برای برقراری ارتباط بین داده های ورودی و خروجی و مدل(HEC-HMS) دارای قابلیت بالایی در بهینه سازی آبنمود شبیه سازی شده می باشد. عامل هدر رفت اولیه خاک به عنوان یک معیار کمی در برگیرنده سه فاک...

متن کامل

شبیه‌سازی بارش- رواناب و تخمین سیل در حوضه‌ی آبریز خرم‌آباد با مدل HEC–HMS

    فرآیند بارش- رواناب یک حوضه‌ی آبریز عمدتاً تحت تأثیر شرایط هیدرولوژیکی، ژئومورفولوژی و اقلیم منطقه می‌باشد. یکی از عمومی‌ترین روش­ها برای شناخت فرآیند بارش رواناب شبیه­سازی آن با استفاده از مدل­های هیدرولوژیکی و تجزیه و تحلیل نتایج حاصله می‌باشد. در این مطالعه با استفاده از مدل HEC–HMS فرآیند بارش– رواناب حوضه آبریز خرم‌آباد شبیه‌سازی شد و مورد واسنجی قرار گرفت نتایج نشان داد که سازگاری خوبی...

متن کامل

تحلیل عدم قطعیت متغیرهای مدل هیدرولوژیکی بارش-رواناب HEC-HMS با استفاده از روش GLUE در حوضه آبریز سد دز

این مطالعه، کاربرد روش عمومی عدم قطعیت تشابهات (GLUE) را برای واسنجی خودکار مدل معروف HEC-HMS نشان می‌دهد. برای این منظور روش GLUE جهت واسنجی مدلتوسعه‌یافتهHEC-HMS، برای حوضه سد دز در جنوب غرب ایران استفاده شد. از سه رخداد انتخاب‌شده اولین رخداد برای واسنجی مدل؛ سپس تمام رخدادها برای آنالیز عدم قطعیت و حساسیت توسط </str...

متن کامل

شبیه سازی فرآیند بارش - رواناب با بکار گیری مدل hec-hms و مقایسه آن با مدل شبکه عصبی مصنوعی (مطالعه موردی: حوضه آبریز قره آقاج)

برآورد رواناب حاصل از بارندگی در یک حوضه ی آبریز از جهات گوناکون، از جمله مدیریت سدها و مخازن، طراحی سازه های کنترل و تنظیم سیلاب، کنترل فرسایش و غیره، از دیر باز مورد توجه هیدرولوژیست ها بوده است. فرآیند تبدیل بارندگی به رواناب فرآیندی است کاملا غیر خطی و از حیث زمانی و مکانی نیز پدیده ای کاملا تصادفی می باشد و لذا تشریح آن با مدل های ساده به راحتی امکان پذیر نیست. تاکنون مدل های بی شماری جهت ...

ذخیره در منابع من

ذخیره در منابع من ذخیره شده در منابع من

{@ msg_add @}

  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی راحت تر خواهید کرد

دانلود متن کامل

برای دسترسی به متن کامل این مقاله و 10 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید


عنوان ژورنال:

دوره 27  شماره 4

صفحات  137- 158

تاریخ انتشار 2013-03

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2021