پیش‌بینی تراکم جریان شکافنده در سواحل میانه با استفاده از شبکه‌های عصبی مصنوعی

نویسندگان

  • حسین شیرگاهی استادیار گروه کامپیوتر، دانشگاه آزاد اسلامی، واحد جویبار
چکیده

جریان‌های شکافنده جریان‌هایی قوی، قارچی شکل هستند که عامل اصلی تلفات ناشی از غرق شدن شناگران در منطقه خیزاب ساحلی محسوب می‌شوند. با توجه به رفتار متغیر این جریان‌ها و محدودیت های بسیار در مشاهدات میدانی، در این پژوهش با استفاده از شبکه‌ عصبی مصنوعی، مدلی در مورد تخمین میزان تراکم جریان‌های شکافنده در سواحل حالت میانه ارائه شده است. به این منظور نخست اطلاعات مرتبط به سیستم جریان شکافنده از طریق مدل عددی Mike21/3 به صورت پارامترهای بی‌بعد عدد فرود، ارتفاع موج، پهنای خیزاب و پهنای کانال جریان استخراج شدند. در گام بعدی تاثیر هر یک از پارامترهای بی‌بعد روی تراکم جریان‌ برای توابع و نرون‌های مختلف شبکه عصبی بررسی شد. سپس نتایج مدل در هجوم امواجی با ارتفاع مختلف با نتایج میدانی سایر محققین مورد مقایسه قرار گرفت و تطابق بسیار خوبی بین آن‌ها مشاهده شد. نتایج این تحقیق نشان می‌دهد با افزایش ارتفاع امواج بر سرعت جریان‌ و فواصل کانال ها افزوده می‌شود و به تدریج از میزان تراکم جریان‎کاسته می‌شود. نتایج دیگر این تحقیق حاکی از آن است در شرایطی که امواج کم‌ارتفاع‌تر بر دریا حاکمند، تابع گرادینت دیسنت ویت آداپتیو لرنینگ ریت (gda) با کمترین خطا (RMSE معادل 013/0) و در شرایطی که امواج مرتفع‌تر بر دریا حاکمند تابع کواسی نیوتن (bfg) با کمترین خطا (RMSE معادل 00282/0) هر کدام با 14 نرون دقیق‌ترین تخمین را از میزان تراکم جریان‌های شکافنده در سواحلی باحالت میانه ارائه می‌دهند.

برای دانلود باید عضویت طلایی داشته باشید

برای دسترسی به متن کامل این مقاله و 10 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

تولید مصنوعی جریان رودخانه با استفاده از شبکه‌های عصبی مصنوعی

در این مطالعه قابلیت مدل‎های شبکه عصبی مصنوعی در زمینه تولید مصنوعی جریان ارزیابی می‌شود. مدلی که برای تولید مصنوعی بکار رفته با ترکیب مدل شبکه عصبی و یک مؤلفه تصادفی با توزیع نرمال ایجاد شده است. در توسعه مدل از شبکه‌ عصبی چند لایه تغذیه پیشرفتی با الگوریتم آموزشی انتشار برگشتی خطا استفاده شده است. بر این اساس مدل، سری‌های بلند مدت و تا 300 سال جریان مصنوعی روزانه در رودخانه خرسان را تنها با ...

متن کامل

پیش‌بینی بافت خاک با استفاده از شبکه‌های عصبی مصنوعی

بافت خاک یکی از مهم­ترین ویژگی‌های خاک است که بر روی بسیاری از خصوصیات فیزیکی و شیمیایی مانند ظرفیت نگهداری آب، ظرفیت تبادل کاتیونی، حاصلخیزی خاک و تهویه خاک اثر می­گذارد. امروزه از فناوری هوش مصنوعی مانند شبکه­های عصبی و عصبی فازی برای حل مسائل مربوط به مدل­سازی سیستم­ها و فرآیند­ها استفاده می­شود. در این پژوهش کارآیی شبکه‌های عصبی مصنوعی در پیش‌بینی بافت خاک بررسی شد. بدین­منظور 150 نمونه خاک...

متن کامل

پیش‌بینی فشار در شبکه‌های آبرسانی با استفاده از شبکه‌های عصبی مصنوعی و استنتاج فازی

فشار نقاط مصرف در شبکه‌های آب‌رسانی یکی از مهم‌ترین پارامترهای هیدرولیکی است که می‌تواند در مدیریت بهینه شبکه‌های توزیع آب مورد استفاده قرار گیرد. از آن‌جایی‌که فشار، اثرات متفاوتی بر پارامترهای مختلف مدیریت شبکه، همچون عملکرد هیدرولیکی، قابلیت اطمینان، پایداری شبکه و نشت دارد، لذا شناسایی روند تغییرات و تعیین میزان آن از اهمیت بسیاری در سطوح مختلف مدیریتی برخوردار است. بخش قابل توجهی از آب ورو...

متن کامل

پیش‌بینی جریان روزانه رودخانه اهرچای با استفاده از مدل قوانین M5 و مقایسه آن با شبکه‌های عصبی مصنوعی المانی (ENN)

برآورد صحیح آبدهی رودخانه‌ها یکی از موارد مهم در پیش‌بینی خشکسالی، سیلاب، طراحی سازه­‌های آبی، بهره‌برداری از مخازن سدها و کنترل رسوب می‌باشد. از این‌رو متخصصان علوم مهندسی آب جهت برآورد دقیق جریان، از روش‌های هوشمند مانند شبکه‌های عصبی مصنوعی و روش‌های مختلف داده‌کاوی بهره گرفته‌اند. در این مطالعه، جهت پیش­بینی جریان روزانه رودخانه اهرچای، از روش­های شبکه عصبی مصنوعی المانی (ENN) و قوانین درخت...

متن کامل

پیش‌بینی ارتفاع موج در سواحل انزلی با استفاده از شبکه عصبی مصنوعی

در امور مربوط به دریا روش‌های مختلفی برای پیش بینی وجود دارد. در این مقاله که در منطقه‌ی بندر انزلی انجام شده، برای پیش بینی ارتفاع امواج در دریای خزر از تکنیک شبکه‌ی عصبی مصنوعی استفاده شده است. داده‌ها که از سازمان بنادر و کشتیرانی و شرکت نفت خزر  اخذ شده در دوره های زمانی3،6، 12 و 24 ساعته  توسط سیستم ADCP اندازه گیری شده‌اند. شبکه‌ی مورد استفاده یک شبکه‌ی سه لایه پیشرو با 4 نورون در هر لایه...

متن کامل

پیش‌بینی غلظت آلاینده منوکسیدکربن در کلان‌شهر تهران با استفاده از شبکه‌های عصبی مصنوعی

زمینه و هدف:. راهکارهای متعددی برای کنترل آلودگی هوا وجود دارد که یکی از آن‌ها پیش­بینی میزان آن است. هدف از این تحقیق ارایه یک مدل شبکه عصبی مصنوعی با ساختار چندلایه، برای آلاینده CO در شهر تهران برای پیش­بینی 24ساعت آینده آن می­باشد. روش بررسی: از مشخصه­های سرعت باد، جهت باد، دما، رطوبت نسبی و فشار هوا به عنوان داده­های هواشناسی و از غلظت منوکسیدکربن به عنوان پارامتر آلودگی هوا به منظور پیش­...

متن کامل

ذخیره در منابع من

ذخیره در منابع من ذخیره شده در منابع من

{@ msg_add @}

  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی راحت تر خواهید کرد

دانلود متن کامل

برای دسترسی به متن کامل این مقاله و 10 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید


عنوان ژورنال:

دوره 5  شماره 2

صفحات  -

تاریخ انتشار 2020-02-20

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

copyright © 2015-2021