× خانه ژورنال ها پست ها ثبت نام ورود

Analysis of Stress Intensity Factors in Hollow Cylinders Reinforced by an Effective Coating Containing Multiple Cracks

نویسندگان

  • Alireza Hassani Youth and Elite Research Club, Science and Research Branch, Islamic Azad University, Tehran, Iran
  • Mostafa Karimi Assistant Professor Fereydan Branch, Islamic Azad University, Isfahan, Iran

چکیده

In this paper, the solution of an isotropic hollow cylinder, with an isotropic coating, weakened by multiple radial cracks is studied. The hollow cylinder and its coating are under Saint-Venant torsional loading. The series solution is then derived for displacement and stress fields in the cross section of the cylinder containing a Volterra-type screw dislocation. The dislocation solution is employed to derive a set of Cauchy singular integral equations for the analysis of multiple curved cracks. The solution to these equations is used to determine the torsional rigidity of the domain and the stress intensity factors (SIFs) for the tips of the cracks. Finally, several examples are presented to show the effect of the coating on the reduction of the mechanical stress intensity factor in the hollow cylinder.According to the above review, the fracture problem of the shafts under torsion is an interesting problem. It is worth noting that all of the above mentioned works were limited to the shafts with particular orientation and geometry

برای دسترسی به متن کامل این مقاله و 10 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

ورود

منابع مشابه

In this paper, transient thermomechanical stress intensity factors for functionally graded cylinders with complete internal circumferential cracks are obtained using the weight function method. The finite difference method is used to calculate the time dependent temperature distribution and thermal stresses along the cylinder thickness. Furthermore, finite element analysis is performed to deter...

This article utilizes the average stress method to obtain the stress intensity factor of rotating solid and hollow disks/cylinders containing a radial crack‎. ‎It is assumed that the cracks are located radially at center‎, ‎internal or external radius of the geometry‎. ‎Results are shown for both of the plane stress and plane strain assumptions and are validated against the known data introduce...

In this paper, the analytical solution of an electric and Volterra edge dislocation in a functionally graded piezoelectric (FGP) medium is obtained by means of complex Fourier transform. The system is subjected to in-plane mechanical and electrical loading. The material properties of the medium vary exponentially with coordinating parallel to the crack. In this study, the rate of the gradual ch...

Abstract: The solution to problem of an orthotropic long cylinder subjected to torsional loading is first obtained by means of separation valuables. The cylinder is twisted by two lateral shear tractions and the ends of the cylinder surface of the cylinder are stress-free. First, the domain under consideration is weakened by an axisymmetric rotational Somigliana ring dislocation. The dislocatio...

In this paper an exact formulation of the plane elasticity problem for a hollow cylinder or a disk containing a radial crack is given. The crack may be an external edge crack, an internal edge crack, or an embedded crack. It is assumed that on the crack surfaces the shear traction is zero and the normal traction is an arbitrary function of r. For various crack geometries and radius ratios, the ...