× خانه ژورنال ها پست ها ثبت نام ورود

Cardiac dysfunction is attenuated by ginkgolide B via reducing oxidative stress and fibrosis in diabetic rats

نویسندگان

  • Guo-Guang Wang Department of Pathophysiology, Wannan Medical College, Wuhu, P.R. China
  • Jing Wang Department of Physiology, Wannan Medical College, Wuhu, P.R. China
  • Wei Li Department of Pathophysiology, Wannan Medical College, Wuhu, P.R. China
  • Yuxin Jiang School of Medicine, Jiaxing University, Jiaxing, P.R. China|Department of Physiology, Wannan Medical College, Wuhu, P.R. China

چکیده

Objective(s): Diabetic cardiomyopathy is a leading factor of high morbidity and mortality in diabetic patients. Our previous results revealed that ginkgolide B alleviates endothelial dysfunction in diabetic rats. This study aimed to investigate the effect of ginkgolide B on cardiac dysfunction and its mechanism in diabetic rats.Materials and Methods: Diabetes was induced in rats through the intraperitoneal injection of streptozotocin (STZ). Hemodynamics was monitored to assess cardiac function. Oxidative stress was examined by detecting levels of malondialdehyde (MDA) and superoxide dismutase (SOD) in serum, and expression of sirtuin (SIRT)1, heme oxygenase (HO)-1, and phosphorylated AMPK in the heart. Masson’s trichrome staining and expression of transforming growth factor (TGF)-β1, smooth muscle actin (α-SMA), and phosphorylated (p-) Smad2 and Smad3 were used to evaluate cardiac fibrosis. Inflammatory cytokine in serum and levels of p-PI3K, p-Akt, p-p38, and p-JNK in the heart were determined.Results: Ginkgolide B significantly improved hemodynamics in diabetic rats. Compared with diabetic rats, treatment with ginkgolide B significantly decreased levels of inflammatory cytokines, improved oxidative stress via reducing MDA concentration, and elevating SOD activity in serum and increasing expression of SIRT1, HO-1, and p-AMPK. Further, ginkgolide B alleviated cardiac fibrosis by decreasing expression of TGF-β1, α-SMA, and p-Smad2 and p-Smad3. Meanwhile, ginkgolide B reduced Levels of p-P38, and p-JNK, and increased levels of p-PI3K and p-Akt.Conclusion: The results suggested that ginkgolide B alleviated cardiac dysfunction by reducing oxidative stress and cardiac fibrosis.

برای دسترسی به متن کامل این مقاله و 10 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

ورود

منابع مشابه

Left ventricular (LV) dysfunction is a common comorbidity in diabetic patients, although the molecular mechanisms underlying this cardiomyopathic feature are not completely understood. Aldehyde dehydrogenase 2 (ALDH2) has been considered a key cardioprotective enzyme susceptible to oxidative inactivation. We hypothesized that hyperglycemia-induced oxidative stress would influence ALDH2 activity...

Diabetic cardiomyopathy (DCM) is characterized by cardiac dysfunction and cardiomyocyte apoptosis. Oxidative stress is suggested to be the major contributor to the development of DCM. This study was intended to evaluate the protective effect of low molecular weight fucoidan (LMWF) against cardiac dysfunction in diabetic rats. Type 2 diabetic goto-kakizaki rats were untreated or treated with LMW...

BACKGROUND Numerous evidences suggest that diabetic heart is characterized by compromised ventricular contraction and prolonged relaxation attributable to multiple causative factors including calcium accumulation, oxidative stress and apoptosis. Therapeutic interventions to prevent calcium accumulation and oxidative stress could be therefore helpful in improving the cardiac function under diabe...

Background and Objective: In this research, the effect of chronic dietary soybean aqueous extract on aortic reactivity of streptozotocin (STZ)-diabetic rats was investigated. Materials and Methods: STZ-diabetic rats were treated with soybean aqueous extract for two months after diabetes induction. Contractile reactivity to KCl and phenylephrine (PE) and relaxation response to acetylcholine (ACh...

Endocannabinoids and cannabinoid 1 (CB(1)) receptors have been implicated in cardiac dysfunction, inflammation, and cell death associated with various forms of shock, heart failure, and atherosclerosis, in addition to their recognized role in the development of various cardiovascular risk factors in obesity/metabolic syndrome and diabetes. In this study, we explored the role of CB(1) receptors ...

Objectives—In this study, we have investigated the effects of cannabidiol (CBD) on myocardial dysfunction, inflammation, oxidative/nitrosative stress, cell death and interrelated signaling pathways, using a mouse model of type I diabetic cardiomyopathy and primary human cardiomyocytes exposed to high glucose. Background—CBD, the most abundant nonpsychoactive constituent of Cannabis sativa (mari...