× خانه ژورنال ها پست ها ثبت نام ورود

Kinetic and Thermodynamic Studies on the Reactivity of Hydroxyl Radicals in Wastewater Treatment by Advanced Oxidation Processes

نویسندگان

  • M. E. Olya Department of Environmental Research, Institute for Color Science and Technology, Tehran, Iran

چکیده

The removal of dyes from wastewater, is one of the major environmental concerns due to their high color density, and they are toxic at even low concentrations. Adsorption process by advanced oxidation processes (AOPs) has been found to be a more effective method than classical methods for treating dye-containing wastewater. This research, is to investigate the decolorization abilities of azo dye in order to treat organic polluted wastewaters efficiently by AOPs. Various operational parameters such as pH, initial dye concentration and catalyst loading were investigated on the use of ZnO/W in the adsorption of Reactive Red 31 (RR 31) dye. The study also focused on the kinetic and thermodynamic investigation such as activation energy (Ea), standard Gibbs free energy (ΔG0), standard enthalpy (ΔH0), and standard entropy (ΔS0). The kinetics of adsorption of dye followed a pseudo-first order kinetic model. Further, thermodynamic study showed that the photocatalytic decolorization of this dye is an endothermic and spontaneous reaction. This study represents a success of thermodynamic for the application in environmental area. Additionally, cost analysis of the process was discussed. The treatment effectiveness was reported as the electrical energy consumed per unit volume (EEO) of waste-water treated required for 100% decolorization of the investigated compound.

برای دسترسی به متن کامل این مقاله و 10 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

ورود

منابع مشابه

در این مطالعه، عملکرد دو سیستم اکسیداسیون شیمیایی پیشرفته و یک سیستم بیولوژیکی برای حذف آموکسی سیلین در فاضلاب های سنتزیدر غلظت های مشابه با موارد صنعتی مورد بررسی قرار گرفته شدند. مطالعه انجام شده دارای سه بخش متفاوت اکسیداسیون با ازن و اشعه uv، اکسیداسیون با استفاده از نانو فتوکاتالیست tio2 و استفاده از بیوراکتور هوازی لجن فعال با جداکننده های فیزیکی می باشد. در هر بخش، متغیر های متفاوتی متنا...

a general overview on the prospective of various oxidation and combined processes in the treatment of tannery industry effluent are reported. various oxidation and combined processes such as uv/h2o2/hypochlorites, fenton and electro-oxidation, photo-chemical, photo-catalytic, electro-catalytic oxidation, wet air oxidation, ozonation, biological followed by ozone/uv/ h2o2, coagulation or ele...

Cellular exposure to particulate matter with concomitant formation of reactive oxygen species (ROS) and oxidization of biomolecules may lead to negative health outcomes. Evaluating the particle-induced formation of ROS and the oxidation products from reaction of ROS with biomolecules is useful for gaining a mechanistic understanding of particle-induced oxidative stress. Aqueous suspensions of p...

Treatment of textile wastewater is challenging because the water contains toxic compounds that have low biodegradability. Dyes, detergents, surfactants, biocides and more are used to improve the textile process and to make the clothes resistant to physical, chemical and biological agents. New technologies have been developed in the last decades and in particular Advanced Oxidation Processes (AO...

One of the most challenging issues of the last decades is the presence of recalcitrant compounds in the effluents of wastewater treatment plants, due to their toxicity on both human health and environment. Although conventional biological processes are usually efficient for the degradation of pollutants occurring in wastewaters, most of these compounds are not effectively removed. In this conte...

A general overview on the prospective of various oxidation and combined processes in the treatment of tannery industry effluent are reported. Various oxidation and combined processes such as UV/H2O2/Hypochlorites, Fenton and Electro-oxidation, photo-chemical, photo-catalytic, electro-catalytic oxidation, wet air oxidation, ozonation, biological followed by ozone/UV/ H2O2, coagulation or electro...