× خانه ژورنال ها پست ها ثبت نام ورود

Skin Mast Cell Promotion in Random Skin Flaps in Rats using Bone Marrow Mesenchymal Stem Cells and Amniotic Membrane

نویسندگان

  • Abolfazl Abbaszadeh Department of Surgery, Lorestan University of Medical Sciences, Khorramabad, Iran
  • Farzaneh Chehelcheraghi Department of Anatomical Sciences, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
  • Magid Tavafi Department of Surgery, Lorestan University of Medical Sciences, Khorramabad, Iran

چکیده

Background: Skin flap procedures are employed in plastic surgery, but failure can lead to necrosis of the flap. Studies have used bone marrow mesenchymal stem cells (BM-MSCs) to improve flap viability. BM-MSCs and acellular amniotic membrane (AAM) have been introduced as alternatives. The objective of this study was to evaluate the effect of BM-MSCs and AAM on mast cells of random skin flaps (RSF) in rats. Methods: RSFs (80 × 30 mm) were created on 40 rats that were randomly assigned to one of four groups, including (I) AAM, (II) BM-MSCs, (III) BM-MSCs/AAM, and (IV) saline (control). Transplantation was carried out during the procedure (zero day). Flap necrosis was observed on day 7, and skin samples were collected from the transition line of the flap to evaluate the total number and types of mast cells. The development and the total number of mast cells were related to the development of capillaries. Results: The results of one-way ANOVA indicated that there was no statistically significant difference between the mean numbers of mast cell types for different study groups. However, the difference between the total number of mast cells in the study groups was statistically significant (p = 0.001). Conclusion: The present study suggests that the use of AAM/BM-MSCs can improve the total number of mast cells and accelerate the growth of capillaries at the transient site in RSFs in rats.

جستجوی کلمه کلیدی


برای دسترسی به متن کامل این مقاله و 10 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

ورود

منابع مشابه

conclusions our findings showed that the treatment of flaps with bm-msc and aam transplantations significantly promoted flap survival compared to a control group. the viability of the flap was improved by combining bm-mscs with aam matrix scaffolds. materials and methods bm-mscs and aams were transplanted into subcutaneous tissue in the flap area. on the 7th postoperative day, the surviving fla...

Objective(s): Covering tissue defects using skin flaps is a basic surgical strategy for plastic and reconstructive surgery. The aim of this study was to evaluate the effects of chicken embryo extract (CEE) and bone marrow derived mesenchymal stem cells (BM-MSCs) on random skin flap survival (RSF) in rats. Using chicken embryo extract can be an ideal environment for the growth and proliferation ...

In the bone marrow, there are certain populations of stem cell sources with the capacity to differentiate into several different types of cells. Ideally, cell transplants would be readily obtainable, easy to expand and bank, and capable of surviving for sufficient periods of time. Bone marrow mesenchymal stem cells (BM-MSCs) possess all of these characteristics. One of the most important benefi...

BACKGROUND The necrotic skin flap represents a great challenge in plastic and reconstructive surgery. In this study, we evaluated the effect of bioscaffolds, acellular amniotic membranes (AAMs), and bone marrow-derived mesenchymal stem cells (BM-MSCs) on random skin flap (RSF) survival in rats by applying a cell-free extracellular matrix scaffold as a supportive component for the growth and pro...

Background & Objective:  Wound dressing and healing in diabetic patients is encountered with many problems. This study aims to investigate the effect of bone marrow derived mesenchymal stem cells (BM-MSCs) on the survival of random skin flap (RSF) on Streptozotocin-induced diabetic rats (STZ) using an optical microscope. Materials & Methods:  In this study, 60 male Albino Wistar rats were used...

Introduction: Mesenchymal Stem Cells (MSCs) are multipotent cells capable of duplication and auto-recovery and distinction from various cells including chondrocytes, adipocytes, chondroblasts, fibroblasts, and osteoblasts. Human stem cells are always subject to local and external mechanical loads. External loads are caused by physical activity in external environment loading to infliction of st...