× خانه ژورنال ها پست ها ثبت نام ورود

The Density-Driven Nanofluid Convection in an Anisotropic Porous Medium Layer with Rotation and Variable Gravity Field: A Numerical Investigation

نویسنده

  • Dhananjay Yadav Department of Mathematical & Physical Sciences, University of Nizwa, Nizwa, P.O. Box 33, PC 616, Sultanate of Oman

چکیده

In this study, a numerical examination of the significance of rotation and changeable gravitational field on the start of nanofluid convective movement in an anisotropic porous medium layer is shown. A model that accounts for the impact of Brownian diffusion and thermophoresis is used for nanofluid, while Darcy’s law is taken for the porous medium. The porous layer is subjected to uniform rotation and changeable downward gravitational field which fluctuates with the height from the layer by linearly or parabolic. The higher-order Galerkin technique is applied to obtain the numerical solutions. The outcomes demonstrate that the rotation parameter TD, the thermal anisotropy parameterh and the gravity variation parameter λ slow the beginning of convective motion, whereas the mechanical anisotropy parameter ξ, the nanoparticle Rayleigh-Darcy number Rnp, the modified diffusivity ratio NAnf and the modified nanofluid Lewis number Lenf quick the start of convective motion. For instance, by rising the gravity variation parameterfrom zero to 1.4, the critical nanofluid thermal Rayleigh-Darcy number Rnf,c and the critical wave numberboost maximum around 133% and 7%, respectively for linear variation of the gravity field, while it were 47% and 2.8% for parabolic variation of the gravity field. It is also observed that the system is more unstable for the parabolic variation of the gravity field. 

برای دسترسی به متن کامل این مقاله و 10 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

ورود

منابع مشابه

In this paper a transient free convection flow around a sphere with variable surface temperature and embedded in a porous medium has been considered. The temperature of the sphere is suddenly raised and subsequently maintained at values that varies with position on surface. The method of asymptotic expansions is applied for small Rayleigh numbers and then a finite-difference scheme is used to s...

Steady state natural convection of Al2O3-water nanofluid inside a square cavity filled with a porous medium is investigated numerically. The temperatures of the two side walls of the cavity are maintained at TH and TC, where TC has been considered as the reference condition. The top and the bottom horizontal walls have been considered to be insulated i.e., non-conducting and impermeable to mass...

In the present study, mixed convection laminar flow around an adiabatic body in a Lid-driven enclosure filled with nanofluid using variable thermal conductivity and variable viscosity is numerically investigated. The fluid around the body in the enclosure is a water- based nanofluid containing Al2O3 nanoparticles. The Vertical enclosure’s walls are maintained at constant cold temperature an...

In present paper, a numerical analysis for a rectangular cavity filled with a anisotropic porous media has been studied. It is assumed that the horizontal walls are adiabatic and impermeable, while the side walls of the cavity are maintained at constant temperatures and concentrations. The buoyancy force that induced the fluid motion are assumed to be cooperative. In the two extreme cases o...

This paper presents results of a numerical study of mixed convection and entropy generation of Cu–water nanofluid in a square ventilating cavity at different inclination angles. Except a piece of bottom wall with a uniform heat flux, all of the cavity walls are insulated. The inlet port is placed at the bottom of the left wall and the outlet port is positioned at the top of the right wall....