We study a stationary scattering problem related to the nonlinear Helmholtz equation $-\Delta u - k^2 = f(x,u) \ \text{in $\mathbb{R}^N$,}$ where $N \ge 3$ and $k>0$. For given incident free wave $\varphi \in L^\infty(\mathbb{R}^N)$, we prove existence of complex-valued solutions form $u=\varphi+u_{\text{sc}}$, $u_{\text{sc}}$ satisfies Sommerfeld outgoing radiation condition. Since neither var...