نتایج جستجو برای Stochastic Data Envelopment Analysis (SDEA)

تعداد نتایج: 4020186 فیلتر نتایج به سال:

Data Envelopment Analysis (DEA) has enjoyed a wide range of acceptance by researchers and practitioners alike as an instrument of performance analysis and management since its introduction in 1978. Many formulations and thousands of applications of DEA have been reported in a considerable variety of academic and professional journals all around the world. Almost all of the formulations and appl...

In models of data envelopment analysis (DEA), an optimal set of weights is generally assumed to represent the assessed decision making unit(DMU) in the best light in comparison to all the other DMUs, and so there is an optimal set of weights corresponding to each DMU. The present paper, proposes a three stage method to determine one common set of weights for decision making units. Then, we use ...

Data envelopment analysis (DEA) as introduced by Charnes et al [3] is a linear programming technique that has widely been used to evaluate the relative efficiency of a set of homogenous decision making units (DMUs). In many real applications, the input-output variables cannot be precisely measured. This is particularly important in assessing efficiency of DMUs using DEA, since the efficiency sc...

This paper presents a simplified version of Data Envelopment Analysis (DEA) a conventional approach to evaluating the performance and ranking of competitive objects characterized by two groups of factors acting in opposite directions: inputs and outputs. DEA with a Perfect Object (DEA PO) augments the group of actual objects with a virtual Perfect Object the one having greatest outputs and smal...

In long-term performance analyses of water systems with surface reservoirs for different operating scenarios, the analyst (or decision maker) is faced with two connected problems: (1) how to handle the extensive output of the simulation model and derive information on the scenarios scores for a prescribed set of performance criteria, and (2) how to compare scenarios in a multi-criterial sense w...

Abstract: In the conventional data envelopment analysis (DEA), all the data assumes the form of crisp numerical values. However, the observed values of the input and output data in real-world problems are sometimes imprecise or vague. Some researchers have proposed various fuzzy methods for dealing with the imprecise and ambiguous data in DEA by constructing linear programming (LP) models with ...

This article combines two techniques: data envelopment analysis (DEA) and Factor analysis (FA) to data reduction in decision making units (DMU). Data envelopment analysis (DEA), a popular linear programming technique is useful to rate comparatively operational efficiency of decision making units (DMU) based on their deterministic (not necessarily stochastic) input–output data and factor analysi...

Data envelopment analysis (DEA) is a non-parametric method for evaluating the relative efficiency of decision-making units (DMUs) on the basis of multiple inputs and outputs. Conventional DEA models assume that inputs and outputs are measured by exact values on a ratio scale. However, the observed values of the input and output data in real-world problems are often vague or random. Indeed, deci...

In the use of peer group data to assess individual, typical or best practice performance, the effective detection of outliers is critical for achieving useful results. In these ‘‘deterministic’’ frontier models, statistical theory is now mostly available. This paper deals with the statistical pared sample method and its capability of detecting outliers in data envelopment analysis. In the prese...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید