Now, let us consider the case ofK = Kb with b ∈ (1,∞). For v ∈ R andQ ⊆ [d], let vQ denote the 6 projection of v to those dimensions inQ. Then for any v ∈ R, and any w ∈ Kb withQ = {i : wi 6= 7 0}, we know by Hölder’s inequality that 〈w,v〉 = 〈wQ,vQ〉 ≥ −‖w‖b · ‖vQ‖a , for a = b/(b− 1). 8 Moreover, one can have 〈wQ,vQ〉 = −‖w‖b · ‖vQ‖a , when |wi| /‖w‖b = |vi|/‖v‖a and 9 wivi ≤ 0 for every i ∈ Q. ...