Direct dyes removal using modified magnetic ferrite nanoparticle

نویسندگان

  • Niyaz Mohammad Mahmoodi
  • Jafar Abdi
  • Dariush Bastani
چکیده

The magnetic adsorbent nanoparticle was modified using cationic surface active agent. Zinc ferrite nanoparticle and cetyl trimethylammonium bromide were used as an adsorbent and a surface active agent, respectively. Dye removal ability of the surface modified nanoparticle as an adsorbent was investigated. Direct Green 6 (DG6), Direct Red 31 (DR31) and Direct Red 23 (DR23) were used. The characteristics of the adsorbent were studied using Fourier transform infrared (FTIR), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The effect of adsorbent dosage, initial dye concentration and salt was evaluated. In ternary system, dye removal of the adsorbent at 90, 120, 150 and 200 mg/L dye concentration was 63, 45, 30 and 23% for DR23, 97, 90, 78 and 45% for DR31 and 51, 48, 42 and 37% for DG6, respectively. It was found that dye adsorption onto the adsorbent followed Langmuir isotherm. The adsorption kinetic of dyes was found to conform to pseudo-second order kinetics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dye Removal from Single and Quaternary Systems Using Surface Modified Nanoparticle: Isotherm and Kinetics

In this paper, dye removal ability of the surface modified nanoparticle SMN copper ferrite from single and quaternary systems was investigated. Acid Blue 92 AB92, Direct Green 6 DG6, Direct Red 23 DR23 and Direct Red 80 DR80 were used as model compounds. The effect of surfactant concentration, adsorbent dosage, dye concentration and pH on dye removal was evaluated. The adsorption isotherm and k...

متن کامل

Surface Modified Cobalt Ferrite Nanoparticles with Cationic Surfactant: Synthesis, Multicomponent Dye Removal Modeling and Selectivity Analysis

Herein, magnetic cobalt ferrite nanoparticles (CFNPs) was synthesized and its surface was modified by cationic surfactant (cetyltrimethyl ammonium bromide: CTAB) and its potential to selective removal of dye from multicomponent (ternary) system was investigated. Direct red 31 (DR31), Direct green 6 (DG6) and Direct red 23 (DR23) were used as a model dyes. The characteristics of the synthesi...

متن کامل

Photocatalytic Degradation of Textile Dyes Using Ozonation and Magnetic Nickel Ferrite Nanoparticle

Dye photodegradation using ozone and Nickel ferrite nanoparticle (NFN) as a photocatalyst was studied. The catalyst was synthesized and characterized by FT-IR, SEM and XRD. Textile dyes including Remazol Red RB (RRRB) and Direct Green B (DGB) were degraded as model compounds. Dye degradation was investigated using UV–Vis and ion chromatography (IC) analyses. The effect of catalyst dosage, pH, s...

متن کامل

حذف رنگ مستقیم سبز 6 با استفاده از نشانده شدن آنزیم لاکاس بر روی نانو ذرات فریت روی از محلول های آبی

Background and Objective: Manufactured wastewater management of industrial units containing toxic pollutants is essential for environmental protection. Considering the great applications and effects of using the nanomaterial and nanotechnology in the field of environmental protection, the nanoparticle of ZnFe2O4 has been used as a basic particle. On the other hand, enzyme processes, due to thei...

متن کامل

Magnetic Solid Phase Extraction and Removal of Five Cationic Dyes from Aqueous Solution Using Magnetite Nanoparticle Loaded Platanusorientalis Waste Leaves

This paper reports on synthesis of a magnetic adsorbent for wastewater treatment purposes. In this regard, platanus orientalis waste leaves were chosen as a cheap material for preparing the magnetic adsorbent by loading magnetite nanoparticles on it. The synthesized adsorbent was characterized using scanning electron microscope and X-ray diffractometer. Then, it was used for magnetic solid phas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2014