Effect of Three Operating Variables on Degradation of Direct Blue 199 by TiO2 Immobilized into a Polymer surface: Response Surface Methodology

Authors

  • B. Lekhlif Environmental Engineering Laboratory, Hassania School of Public Works, P. O. Box: 8108, Oasis, Casablanca, Marocco
  • J. Jamal-Eddine Laboratory of Organic Synthesis, Extraction and Valorization, Department of Chemistry, Ain Chock Faculty of Sciences, Hassan II University, P.O. Box: 5366, Mâarif, Casablanca, Morocco
  • O. Ounas Laboratory of Organic Synthesis, Extraction and Valorization, Department of Chemistry, Ain Chock Faculty of Sciences, Hassan II University, P.O. Box: 5366, Mâarif, Casablanca, Morocco|Environmental Engineering Laboratory, Hassania School of Public Works, P. O. Box: 8108, Oasis, Casablanca, Marocco
Abstract:

This work aims to study the photodegradation of Direct Blue 199 dye. The investigation was performed using titanium dioxide-based films immobilized on a polymethyl methacrylate (PMMA) polymer, by a promising low coast technique. The characterization of the films by X-ray diffractometry, fourier transform infrared spectroscopy, scanning electron microscopy, UV-Visible transmittance, and fluorescence spectroscopy revealed the deposition of 13.76% by mass of TiO2 with excellent adhesion to the polymer surface. However, the evaluation of the influence of three parameters (pH, initial TiO2 concentration, H2O2 concentration) on the efficiency of color removal in aqueous solution under UV irradiation on suspended semiconductors, have been performed using the response surface methodology based on experimental design. We therefore found the following optimum conditions: pH= 8, [TiO2] = 1369.29 mg.L-1, [H2O2] = 40 mmol.L-1 which led to a discoloration efficiency of 85 %. The results were then used to evaluate the performance of the prepared photocatalyst films, which showed a strong capacity to absorb the dye due to the appearance of pores relative to the preparation procedure, in addition to their catalytic effect. The kinetic of decolorization under optimum conditions was well fitted to the pseudo-first-order kinetic model. 

Download for Free

Sign up for free to access the full text

Already have an account?login

similar resources

Preparation, characterization and photocatalytic degradation of methylene blue by Fe3+ doped TiO2 supported on natural zeolite using response surface methodology

The photocatalytic degradation of methylene blue was investigated with TiO2 and Fe2O3 nanoparticles supported on natural zeolite. The synthesized photocatalyst was characterized by XRD, XRF, FT-IR, EDX, FE-SEM, and BET analyses. The results of XRD, FT-IR, and EDX confirmed the successful loading of Fe3+ doped TiO2 nanoparticles on natural zeolite. Further, the FE-SEM results confirmed the depos...

full text

Application of Response Surface Methodology to Assess the Combined Effect of Operating Variables on the Direct Reduction of Fe2O3 by Coal Volatiles

The reduction of Fe2O3 powder at the top layer by the volatiles from high volatile (HV) bituminous coal at the bottom layer of a multilayer powder geometry including a separating alumina layer was studied. The simultaneous effects of the alumina layer thickness, time, temperature and the weight of coal on the amount of reduction and coal devolatilization were studied by implementing a rotatable...

full text

Optimization and modeling of photocatalytic degradation of Direct Blue 71 from contaminated water by TiO2 nanoparticles: Response surface methodology approach (RSM)

In the current survey, the removal of dye from contaminated water was studied by photocatalytic degradation using TiO2 nanoparticles with respect to pH, TiO2 dosage, reaction time, temperature and initial dye concentration. TiO2 nanoparticles were investigated by XRD, FESEM and FT-IR.The RSM was chosen to study the composition effects of input independent factor...

full text

Optimization and Modeling of Microcystin-LR Degradation by TiO2 Photocatalyst Using Response Surface Methodology

Introduction: Microcystin-leucine arginine (MC-LR) is a toxin with harmful effects on the liver, kidney, heart, and gastrointestinal tract. So, effective removal of MC-LR from water resources is of great importance. The aim of this study was to remove microcystin-LR (MC-LR) from aqueous solution by Titanium Dioxide (TiO2). Materials and Methods: In the present study, TiO2, as a semiconductor, ...

full text

Optimization of photo-degradation of direct blue 258 using nano Titanium Oxide with response surface method

The photodegradation of Direct Blue 258, a member of the group of azo dyes which are commonly used in the various branches of the industry, was studied. The photostability of this dye was not previously surveyed. Photocatalytic degradation method was evaluated. The both light source include solar simulated (UV 400 W lamp) and sun light (E= 400 W/m2) and titanium dioxide nanoparticles were used ...

full text

Optimization of photo-degradation of direct blue 258 using nano Titanium Oxide with response surface method

The photodegradation of Direct Blue 258, a member of the group of azo dyes which are commonly used in the various branches of the industry, was studied. The photostability of this dye was not previously surveyed. Photocatalytic degradation method was evaluated. The both light source include solar simulated (UV 400 W lamp) and sun light (E= 400 W/m2) and titanium dioxide nanoparticles were used ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 14  issue 3

pages  161- 178

publication date 2021-07-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023