A Meshless Method for Numerical Solution of Fractional Differential Equations

نویسندگان

  • A. golbabai Department of Applied Mathematics, Iran University Science and Technology,P.O.Box,16844-13114,Narmak,Tehran,Iran.
  • O. Nikan Department of Applied Mathematics, Iran University Science and Technology,P.O.Box,16844-13114,Narmak,Tehran,Iran
چکیده

In this paper, a technique generally known as meshless numerical scheme for solving fractional dierential equations isconsidered. We approximate the exact solution by use of Radial Basis Function(RBF) collocation method. This techniqueplays an important role to reduce a fractional dierential equation to a system of equations. The numerical results demonstrate the accuracy and ability of this method.

برای دانلود باید عضویت طلایی داشته باشید

برای دسترسی به متن کامل این مقاله و 10 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

a meshless method for numerical solution of fractional differential equations

in this paper, a technique generally known as meshless numerical scheme for solving fractional dierential equations isconsidered. we approximate the exact solution by use of radial basis function(rbf) collocation method. this techniqueplays an important role to reduce a fractional dierential equation to a system of equations. the numerical results demonstrate the accuracy and ability of this me...

متن کامل

Using operational matrix for numerical solution of fractional differential equations

In this article, we have discussed a new application of modification of hat functions on nonlinear multi-order fractional differential equations. The operational matrix of fractional integration is derived and used to transform the main equation to a system of algebraic equations. The method provides the solution in the form of a rapidly convergent series. Furthermore, error analysis of the pro...

متن کامل

A numerical method for solving delay-fractional differential and integro-differential equations

‎This article develops a direct method for solving numerically‎ ‎multi delay-fractional differential and integro-differential equations‎. ‎A Galerkin method based on Legendre polynomials is implemented for solving‎ ‎linear and nonlinear of equations‎. ‎The main characteristic behind this approach is that it reduces such problems to those of‎ ‎solving a system of algebraic equations‎. ‎A conver...

متن کامل

Bernoulli Wavelets Method for Solution of Fractional Differential Equations in a Large Interval

In this paper, Bernoulli wavelets are presented for solving (approximately) fractional differential equations in a large interval. Bernoulli wavelets operational matrix of fractional order integration is derived and utilized to reduce the fractional differential equations to system of algebraic equations. Numerical examples are carried out for various types of problems, including fractional Van...

متن کامل

A fractional type of the Chebyshev polynomials for approximation of solution of linear fractional differential equations

In this paper we introduce a type of fractional-order polynomials based on the classical Chebyshev polynomials of the second kind (FCSs). Also we construct the operational matrix of fractional derivative of order $ gamma $ in the Caputo for FCSs and show that this matrix with the Tau method are utilized to reduce the solution of some fractional-order differential equations.

متن کامل

A Numerical Method for Solving Fuzzy Differential Equations With Fractional Order

In this paper we present a numerical method for fuzzy differential equation of fractional order under gH-fractional Caputo differentiability. The main idea of this method is to approximate the solution of fuzzy fractional differential equation (FFDE) by an implicit method as corrector and explicit method as predictor. This method is tested on numerical examples.

متن کامل

ذخیره در منابع من

ذخیره در منابع من ذخیره شده در منابع من

{@ msg_add @}

  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی راحت تر خواهید کرد

دانلود متن کامل

برای دسترسی به متن کامل این مقاله و 10 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید


عنوان ژورنال:

دوره 4  شماره 1

صفحات  1- 8

تاریخ انتشار 2015-06-30

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

copyright © 2015-2021