× خانه ژورنال ها پست ها ثبت نام ورود

An Efficient Finite Element Formulation Based on Deformation Approach for Bending of Functionally Graded Beams

نویسندگان

  • H Guenfoud LGCH Laboratory, University of Guelma, Algeria
  • H Ziou National Centre of Integrated Studies and research on Building Engineering (CNERIB), Algeria
  • M Guenfoud LGCH Laboratory, University of Guelma, Algeria
  • M Himeur LGCH Laboratory, University of Guelma, Algeria

چکیده

Finite element formulations based generally on classical beam theories such as Euler-Bernoulli or Timoshenko. Sometimes, these two formulations could be problematic expressed in terms of restrictions of Euler-Bernoulli beam theory, in case of thicker beams due to non-consideration of transverse shear; phenomenon that is known as shear locking characterized the Timoshenko beam theory, in case of thin beams; problem of slow of convergence in regards to the element of Timoshenko beam. In responding to this problematic, a new beam finite element model is developed to study the static bending of functionally graded beams. The originality of this model lies in the use of a deformation approach with the consideration of a central node positioned in the middle of the beam. The degrees of freedom of this node are subsequently eliminated by the method of static condensation. In addition, this model is suitable for all linear structures regardless of L/h ratio. Functionally graded material beams have a smooth variation of material properties due to continuous change in micro structural details. The mechanical properties of the beam are assumed to vary continuously in the thickness direction by a simple power-law distribution in terms of the volume fractions of the constituents. A simply supported beam subjected to uniform load for different length-to-thickness ratio has been chosen in the analysis. Finite element solutions obtained with the new finite element model are presented, and the obtained results are evaluated with the existing solutions to verify the validity of the present model. 

برای دسترسی به متن کامل این مقاله و 10 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

ورود

منابع مشابه

In this article, the prominence has been given to study the influence of skew angle on bending response of functionally graded material shell panels under thermo-mechanical environment. Derivation of governing equations is based on the Reddy’s higher-order shear deformation theory and Sander’s kinematic equations. To circumvent the problem of C1 continuity requirement coupled with the finite el...

In this paper an overview of functionally graded materials and constitutive relations of electro elasticity for three-dimensional deformable  solids is presented, and  governing equations of the Bernoulli–Euler and Timoshenko beam theories which account for through-thickness power-law variation of a two-constituent material and piezoelectric layers are developed  using the  principle  of virtua...

Functionally graded materials are commonly used in thermal environment to change the properties of constituent materials. The new numerical procedure of functionally graded skew plates in thermal environment is presented in this study based on the C0-form of the novel third-order shear deformation theory. Without the shear correction factor, this theory is also taking the desirable properties a...

In this paper‎, ‎the static bending‎, ‎free vibration‎, ‎and dynamic response of functionally graded‎ ‎piezoelectric beams have been carried out by finite element method‎‎under different sets of mechanical‎, ‎thermal‎, ‎and electrical‎ ‎loadings‎. ‎The beam with functionally graded piezoelectric material‎ ‎(FGPM) is assumed to be graded across the thickness with a simple‎ ‎power law distributio...

in this paper the nonlinear bending analysis of thick functionally graded plates subjected to mechanical loading is studied. the formulation is derived based on the third-order shear deformation plate theory and von kármán type non-linearity. young’s modulus is assumed to vary according to a power law distribution in terms of the volume fractions of the constituents. the principle of virtual wo...

In this research, analysis of nonlocal magneto-electro-thermo-elastic of a functionally graded nanobeamdue to magneto-electro-elastic loads has been done. In order to formulate the problem the Timoshenko theory of beams is utilized. The principle of virtual work, Hamilton’s principle as well as nonlocal magneto-electro-thermo-elastic relations has been recruited to derive the governing eq...