× خانه ژورنال ها پست ها ثبت نام ورود

Magneto-Thermo-Elastic Stresses and Perturbation of Magnetic Field Vector in a Thin Functionally Graded Rotating Disk

نویسندگان

  • A Ghorbanpour Arani Faculty of Mechanical Engineering, University of Kashan--- Institute of Nanoscience & Nanotechnology, University of Kashan
  • S Amir Faculty of Mechanical Engineering, University of Kashan

چکیده

In this paper, a semi-analytical solution for magneto-thermo-elastic problem in an axisymmetric functionally graded (FG) hollow rotating disk with constant thickness placed in uniform magnetic and thermal fields with heat convection from disk’s surfaces is presented. Solution for stresses and perturbation of magnetic field vector in a thin FG rotating disk is determined using infinitesimal theory of magneto-thermo-elasticity under plane stress conditions. The material properties except Poisson’s ratio are modeled as power-law distribution of volume fraction. The non-dimensional distribution of temperature, displacement, stresses and perturbation of magnetic field vector throughout radius are determined. The effects of the material grading index and the magnetic field on the stress and displacement fields are investigated. The results of stresses and radial displacements for two different boundary conditions are compared with the case of a thin FG rotating disk with the same loading and boundary conditions but in the absence of magnetic field. It has been found that imposing a magnetic field significantly decreases tensile circumferential stresses. Therefore, the fatigue life of the disk will be significantly improved by applying the magnetic field. The results of this investigation can be used for optimum design of rotating disks.

برای دسترسی به متن کامل این مقاله و 10 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

ورود

منابع مشابه

In this article, the magneto-thermo-elastic problem of exponentially graded material (EGM) hollow rotating disk placed in uniform magnetic and temperature fields is considered. Exact solutions for stresses and perturbations of the magnetic field vector in EGM hollow rotating disk are determined using the infinitesimal theory of magneto-thermo-elasticity under plane stress. The material properti...

A generalized thermo-elastic diffusion problem in a functionally graded isotropic, unbounded, rotating elastic medium due to a periodically varying heat source in the context of fractional order theory is considered in our present work. The governing equations of the theory for a functionally graded material with GNIII model are established. Analytical solution of the problem is derived in Lapl...

In this article, magneto-thermo-elastic stresses and perturbation of magnetic field vector are analyzed for a thick-walled cylinder made from polystyrene, reinforced with functionally graded (FG) single-walled carbon nanotubes (SWCNTs) in radial direction, while subjected to an axial and uniform magnetic field as well as a transient thermal field. Generalized plane strain state is considered in...

In this study an analytical method is developed to obtain the response of electro-magneto-thermo-elastic stress and perturbation of a magnetic field vector for a thick-walled spherical functionally graded piezoelectric material (FGPM). The hollow sphere, which is placed in a uniform magnetic field, is subjected to a temperature gradient, inner and outer pressures and a constant electric potenti...

This work deals with the three-dimensional magneto-thermo-elastic problem of a functionally graded truncated conical shell under non-uniform internal pressure and subjected to magnetic and thermal fields. The material properties are assumed to obey the power law form that depends on the thickness coordinate of the shell. The formulation of the problem begins with the derivation of fundamental r...

The present study deals with the elastic analysis of concave thickness rotating disks made of functionally graded materials (FGMs).The analysis is carried out using element based gradation of material properties in radial direction over the discretized domain. The resulting deformation and stresses are evaluated for free-free boundary condition and the effect of grading index on the deformation...