Stream Flow Prediction in Flood Plain by Using Artificial Neural Network (Case Study: Sepidroud Watershed)

نویسنده

  • A.R Mardookhpour Assistant Professor, Department of civil engineering, Islamic Azad University, Lahijan, Iran
چکیده

In order to determine hydrological behavior and water management of Sepidroud River (North of Iran-Guilan) the present study has focused on stream flow prediction by using artificial neural network. Ten years observed inflow data (2000-2009) of Sepidroud River were selected; then these data have been forecasted by using neural network. Finally, predicted results are compared to the observed data. Results showed that neural network could predict stream flow with high precision and the maximum error percentage in data prediction was about 3.

برای دانلود باید عضویت طلایی داشته باشید

برای دسترسی به متن کامل این مقاله و 10 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

stream flow prediction in flood plain by using artificial neural network (case study: sepidroud watershed)

in order to determine hydrological behavior and water management of sepidroud river (north of iran-guilan) the present study has focused on stream flow prediction by using artificial neural network. ten years observed inflow data (2000-2009) of sepidroud river were selected; then these data have been forecasted by using neural network. finally, predicted results are compared to the observed dat...

متن کامل

scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network

today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...

Prediction of ultimate strength of shale using artificial neural network

A rock failure criterion is very important for prediction of the ultimate strength in rock mechanics and geotechnics; it is determined for rock mechanics studies in mining, civil, and oil wellborn drilling operations. Also shales are among the most difficult to treat formations. Therefore, in this research work, using the artificial neural network (ANN), a model was built to predict the ultimat...

متن کامل

Prediction of Entrance Length for Magnetohydrodynamics Channels Flow using Numerical simulation and Artificial Neural Network

This paper focuses on using the numerical finite volume method (FVM) and artificial neural network (ANN) in order to propose a correlation for computing the entrance length of laminar magnetohydrodynamics (MHD) channels flow. In the first step, for different values of the Reynolds (Re) and Hartmann (Ha) numbers (600<ReL increases.

متن کامل

Groundwater quality assessment using artificial neural network: A case study of Bahabad plain, Yazd, Iran

Groundwater quality management is the most important issue in many arid and semi-arid countries, including Iran.Artificial neural network (ANN) has an extensive range of applications in water resources management. In this study,artificial neural network was developed using MATLAB R2013 software package, and Cl, EC, SO4 and NO3 qualitativeparameters were estimated and compared with the measured ...

متن کامل

The Economic Evaluation of Optimal Water Allocation Using Artificial Neural Network (Case Study: Moghan Plain)

recipitation shortage and the consequent loss of several water resources, as well as the population growth, are the most important problems in arid and semi-arid regions like Iran. The providence of basic tools for optimal water resources management is considered as one of the main solutions to this problem. Since the agricultural sector is the main user of water resources, the present study pr...

متن کامل

ذخیره در منابع من

ذخیره در منابع من ذخیره شده در منابع من

{@ msg_add @}

  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی راحت تر خواهید کرد

دانلود متن کامل

برای دسترسی به متن کامل این مقاله و 10 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید


عنوان ژورنال:

دوره 4  شماره 1

صفحات  71- 77

تاریخ انتشار 2012-12-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

copyright © 2015-2021