Sulfur modified ZnO nanorod as a high performance photocatalyst for degradation of Congoredazo dye

نویسندگان

  • A. Bayat Department of Chemistry, Tarbiat Modares University, 14115-175 Tehran, Iran.
  • A. Mahjoub Department of Chemistry, Tarbiat Modares University, 14115-175 Tehran, Iran.
چکیده مقاله:

Sol-gel derived sulfur modified and pure ZnO nanorod were prepared using zinc chloride and thiocarbamide as raw materials. Prepared nanorods were characterized by means of X-ray diffraction (XRD), thermogravimetry- differential scanning calorimetry (TG–DSC), UV- Vis absorption spectroscopy, Brunauer Emmett Teller (BET) specific surface area and Barrett Joyner Halenda (BJH) pore size distribution analyses, scanning electron microscopy (SEM) and Energy-dispersive X-ray spectroscopy (EDX) analyses. The band gaps of sulfur modified and pure ZnO were estimated from UV-Vis spectroscopy data to be 2.75 and 3.18 ev, respectively. The specific surface area of sulfur modified ZnO nanorod calculated to be 2.63 m2/g using BET method. Pore size distribution curve of the mater obtained via BJH method revealed that the diameter of the pores is from several to more than 20nm. Photocatalytic activity of synthesized sulfur modified and pure ZnO nanorod were tested for degradation of Congoredazo dye under ultraviolet and visible light. The results revealed that the sulfur modified ZnO nanorod has excellent photocatalytic activity towards Congored under visible light illumination.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

sulfur modified zno nanorod as a high performance photocatalyst for degradation of congoredazo dye

sol-gel derived sulfur modified and pure zno nanorod were prepared using zinc chloride and thiocarbamide as raw materials. prepared nanorods were characterized by means of x-ray diffraction (xrd), thermogravimetry- differential scanning calorimetry (tg–dsc), uv- vis absorption spectroscopy, brunauer emmett teller (bet) specific surface area and barrett joyner halenda (bjh) pore size distributio...

متن کامل

Study nanostructures of semiconductor zinc oxide (ZnO) as a photocatalyst for the degradation of organic pollutants

In the present study, comparison of  photocatalytic activity of nanostructures semiconductor zinc oxide (ZnO) was prepared using the different methods on the degradation of organic dye such as methylene blue that was investigated. Previous studies have proved that such semiconductors can degrade most kinds of persistent organic pollutants, such as detergents, dyes, pesticides and volatile organ...

متن کامل

Study nanostructures of semiconductor zinc oxide (ZnO) as a photocatalyst for the degradation of organic pollutants

In the present study, comparison of  photocatalytic activity of nanostructures semiconductor zinc oxide (ZnO) was prepared using the different methods on the degradation of organic dye such as methylene blue that was investigated. Previous studies have proved that such semiconductors can degrade most kinds of persistent organic pollutants, such as detergents, dyes, pesticides and volatile organ...

متن کامل

study nanostructures of semiconductor zinc oxide (zno) as a photocatalyst for the degradation of organic pollutants

in the present study, comparison of  photocatalytic activity of nanostructures semiconductor zinc oxide (zno) was prepared using the different methods on the degradation of organic dye such as methylene blue that was investigated. previous studies have proved that such semiconductors can degrade most kinds of persistent organic pollutants, such as detergents, dyes, pesticides and volatile organ...

متن کامل

Mixed ZnO-TiO2 Suspended Solution as an Efficient Photocatalyst for Decolonization of a Textile Dye from Waste Water

Introduction: Textile industries produce large volume of colored dye effluents which are toxic and removal of dyes from wastewater is a significant environmental issue. Advanced oxidation process (AOPs) is alternative method for the complete degradation many organic pollutants. ZnO and TiO2 are important photocatalysts with high catalytic activity that have attracted much research attention. ...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 6  شماره 4

صفحات  425- 431

تاریخ انتشار 2015-10-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023