Abudukeremu Kadier

Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, National University of Malaysia (UKM), 43600 UKM Bangi, Selangor, Malaysia.

[ 1 ] - None-platinum electrode catalysts and membranes for highly efficient and inexpensive H2 production in microbial electrolysis cells (MECs): A review

Microbial electrolysis cell (MEC) is a gripping bio-electrochemical device producing H2 gas from renewable biomass while at the same time treat wastewater.  Through extensive global research efforts in the latest decade, the performance of MECs, including energy efficiency, hydrogen production rate (HPR), and hydrogen recovery have achieved significant breakthroughs. However, employi...

[ 2 ] - The significance of key operational variables to the enhancement of hydrogen production in a single-chamber microbial electrolysis cell (MEC)

Microbial electrolysis cell (MEC) is one of the promising and cutting-edge technologies for generating hydrogen from wastewater through biodegradation of organic waste by exoelectrogenic microbes. In the MECs, the operational parameters, such as applied voltage (Eap), anode surface area, anode-cathode distance, and N2/CO2 volume ratio have a significant impact on the hydrogen yield and producti...

[ 3 ] - None-platinum electrode catalysts and membranes for highly efficient and inexpensive H2 production in microbial electrolysis cells (MECs): A review

Microbial electrolysis cell (MEC) is a gripping bio-electrochemical device producing H2 gas from renewable biomass while at the same time treat wastewater.  Through extensive global research efforts in the latest decade, the performance of MECs, including energy efficiency, hydrogen production rate (HPR), and hydrogen recovery have achieved significant breakthroughs. However, employi...