Abdolmajid Bayandori Moghaddam

Department of Engineering Science, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran, Iran.

[ 1 ] - Electrochemical Synthesis of Novel 1,3-Indandione Derivatives and Evaluation of Their Antiplatelet Aggregation Activities

Electrochemical oxidation of some selected catechol derivatives, using cyclic voltammetry, in the presence of different 2-aryl-1,3-indandiones as nucleophiles, resulted in electrochemical synthesis of new 1,3- indandione derivatives in an undivided cell in good yield and purity. A Michael addition mechanism was proposed for the formation of the analogs based on the reaction conditions which wer...

[ 2 ] - Electrochemical Synthesis of Novel 1,3-Indandione Derivatives and Evaluation of Their Antiplatelet Aggregation Activities

Electrochemical oxidation of some selected catechol derivatives, using cyclic voltammetry, in the presence of different 2-aryl-1,3-indandiones as nucleophiles, resulted in electrochemical synthesis of new 1,3- indandione derivatives in an undivided cell in good yield and purity. A Michael addition mechanism was proposed for the formation of the analogs based on the reaction conditions which wer...

[ 3 ] - Evaluation of Catalytic Effects of Metal Oxide Nanoparticles on Pyrolysis of Used Lubricating Oil

Pyrolysis is an applicable method that has been widely used to recover hydrocarbons from Used Lubricating Oil (ULO). However, large-scale application of this approach has been limited by its noticeably energy and time consuming nature. In the present research, it has been attempted to modify the energy and time requirements of ULO pyrolysis using the catalytic effects of metal oxide nanoparticl...

[ 4 ] - Evaluation of Catalytic Effects of Metal Oxide Nanoparticles on Pyrolysis of Used Lubricating Oil

Pyrolysis is an applicable method that has been widely used to recover hydrocarbons from Used Lubricating Oil (ULO). However, large-scale application of this approach has been limited by its noticeably energy and time consuming nature. In the present research, it has been attempted to modify the energy and time requirements of ULO pyrolysis using the catalytic effects of metal oxide nanoparticl...

نویسندگان همکار