Ali Akbar Salari

[ 1 ] - Hydroquinone detection by BN nanotube: DFT studies

Electrical sensitivity of a boron nitride nanotube (BNNT) was examined toward hydroquinone (C6H4(OH)2) molecule by using density functional theory (DFT) calculations at the B3LYP/6-31G(d) level, and it was found that the adsorption energy (Ead) of hydroquinone on the pristine nanotube is  a bout -7.77kcal/mol. But when nanotubes have been doped with Si and Al atomes, the adsorption energy of hy...

[ 2 ] - Pyrrole detection by BeO nanotube: DFT studies

Electrical sensitivity of a beryllium oxide nanotube (BeONT) was examined toward (C4H5N) molecule by using density functional theory (DFT) calculations at the B3LYP/6-31(d) level, and it was found that the adsorption energy (Ead) of pyrrole on the pristine nanotubes is   a bout -48.58kcal/mol. But when nanotubes has been doped with S and P atomes , the adsorptio...

[ 3 ] - Pyrrole adsorption on the surface of a BN nanotube: A Computational study

Abstract: Electrical sensitivity of a boron nitride nanotube (BNNT) was examined toward pyrrole (C5H6N) molecule by using density functional theory (DFT) calculations at the B3LYP/6-31G (d) level, and it was found that the adsorption energy (Ead) of pyrrole on the pristine nanotubes is a bout -16.37kcal/mol. But when nanotube have been doped with Si and Al atom...

[ 4 ] - ADSORPTION OF PYRIDINE BY USING BeO NANOTUBE: A DFT STUDY

Abstract: Electrical sensitivity of a beryllium oxide nanotube (BeONT) was examined toward (C5H5N) molecule by using density functional theory (DFT) calculations at the B3LYP/6-31(d) level, and it was found that the adsorption energy (Ead) of pyridine on the pristine nanotubes is   a bout -73.29kcal/mol. But when nanotubes has been doped with S and P atomes , t...

[ 5 ] - Aniline adsorption on the surface of a BN nanotube: A Computational study

Electrical sensitivity of a boron nitride nanotube (BNNT) was examined toward aniline (C6H5NH2) molecule by using density functional theory (DFT) calculations at the B3LYP/6-31G (d) level, and it was found that the adsorption energy (Ead) of aniline on the pristine nanotubes is a bout -19.03kcal/mol. But when nanotube has been doped with Si and Al ato...

نویسندگان همکار