Amirali Abbasi

Molecular Simulation laboratory (MSL), Azarbaijan Shahid Madani University, Tabriz, Iran | Computational Nanomaterials Research Group (CNRG), Azarbaijan Shahid Madani University, Tabriz, Iran | Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran

[ 1 ] - Adsorption of H2S molecule on TiO2/Au nanocomposites: A density functional theory study

The adsorption of hydrogen sulfide molecule on undoped and N-doped TiO2/Au nanocomposites was investigated by density functional theory (DFT) calculations. The results showed that the adsorption energies of H2S on the nanocomposites follow the order of 2N doped (Ti site)>N-doped (Ti site)>Undoped (Ti site). The structural properties including bond lengths, angles<span id="...

[ 2 ] - A theoretical investigation of the interaction of Immucillin-A with N-doped TiO2 anatase nanoparticles: Applications to nanobiosensors and nanocarriers

Objective(s): Adsorption of IMMUCILLIN-A (BCX4430) molecule on the pristine and N-doped TiO2 anatase nanoparticles were studied using the density functional theory (DFT) calculations. The adsorption energy analysis indicated that TiO2+IMMUCILLIN-A complexes including OC-substituted TiO2 have higher adsorption energy than the complexes with OT substituted TiO2, thus providing mo...

[ 3 ] - A First-Principles Study of the Interaction of Aspirin with Nitrogen-Doped TiO2 Anatase Nanoparticles

Objective(s): First-principles calculations have been carried out to investigate the interaction of aspirin molecule with nitrogen-doped TiO2 anatase nanoparticles using the density functional theory method in order to fully exploit the biosensing capabilities of TiO2 particles. Methods: For this purpose, we have mainly studied the a...

[ 4 ] - Exploration of the adsorption of caffeine molecule on the TiO2 nanostructures: A density functional theory study

The first principles were calculated to study the adsorption behaviors of caffeine molecules on the pristineand N-doped TiO2 anatase nanoparticles. Both oxygen and nitrogen in the caffeine molecule can reactstrongly with TiO2 nanoparticle. Thus, the binding sites were located on the oxygen or nitrogen atom ofthe caffeine, while the binding site of the TiO2 nanoparticle occurs ...

[ 5 ] - Structural and electronic properties of CO molecule adsorbed on the TiO2 supported Au overlayers: Insights from density functional theory computations

We have examined the adsorption behaviors of carbon monoxide (CO) molecule on TiO2 anatase supported Au overlayers. The results of density functional theory (DFT) calculations were used in order to gain insights into the effects of the adsorption of CO molecules on the considered hybrid nanostructures. We have investigated different adsorption geometries of CO over the nanoparticles....

[ 6 ] - A theoretical study on the adsorption behaviors of Ammonia molecule on N-doped TiO2 anatase nanoparticles: Applications to gas sensor devices

We have performed density functional theory investigations on the adsorption properties of ammonia molecule on the undoped and N-doped TiO2 anatase nanoparticles. We have geometrically optimized the constructed undoped and N-doped nanoparticles in order to fully understand the adsorption behaviors of ammonia molecule. For TiO2 anatase nanoparticles, the binding site is preferentially located on...

نویسندگان همکار