Elyas Shivanian

Department of Mathematics, Imam Khomeini International University, Qazvin, Iran

[ 1 ] - The new implicit finite difference method for the solution of time fractional advection-dispersion equation

In this paper, a numerical solution of time fractional advection-dispersion equations are presented.The new implicit nite dierence methods for solving these equations are studied. We examinepractical numerical methods to solve a class of initial-boundary value fractional partial dierentialequations with variable coecients on a nite domain. Stability, consistency, and (therefore) convergenceof t...

[ 2 ] - Numerical Simulation of 1D Linear Telegraph Equation With Variable Coefficients Using Meshless Local Radial Point Interpolation (‎MLRPI)

In the current work, we implement the meshless local radial point interpolation (MLRPI) method to find numerical solution of one-dimensional linear telegraph equations with variable coefficients. The MLRPI method, as a meshless technique, does not require any background integration cells and all integrations are carried out locally over small quadrature domains of regular shapes, such as lines ...

[ 3 ] - Buckling of Doubly Clamped Nano-Actuators in General form Through Spectral Meshless Radial Point Interpolation (SMRPI)

The present paper is devoted to the development of a kind of spectral meshless radial point interpolation (SMRPI) technique in order to obtain a reliable approximate solution for buckling of nano-actuators subject to different nonlinear forces. To end this aim, a general type of the governing equation for nano-actuators, containing integro-differential terms and nonlinear forces is considered. ...

[ 4 ] - Generalization of Dodgson's "Virtual Center" Method; an Efficient Method for Determinant Calculation

Charles Dodgson (1866) introduced a method to calculate matrices determinant, in asimple way. The method was highly attractive, however, if the sub-matrix or the mainmatrix determination is divided by zero, it would not provide the correct answer. Thispaper explains the Dodgson method's structure and provides a solution for the problemof "dividing by zero" called "virtua...

[ 5 ] - Numerical ‎S‎olution of Two-Dimensional Hyperbolic Equations with Nonlocal Integral Conditions Using Radial Basis Functions‎

This paper proposes a numerical method to the two-dimensional hyperbolic equations with nonlocal integral conditions. The nonlocal integral equation is of major challenge in the frame work of the numerical solutions of PDEs. The method benefits from collocation radial basis function method, the generalized thin plate splines radial basis functions are used.Therefore, it does not require any str...

[ 6 ] - The new implicit finite difference scheme for two-sided space-time fractional partial differential equation

Fractional order partial differential equations are generalizations of classical partial differential equations. Increasingly, these models are used in applications such as fluid flow, finance and others. In this paper we examine some practical numerical methods to solve a class of initial- boundary value fractional partial differential equations with variable coefficients on a finite domain. S...

[ 7 ] - Posynomial geometric programming problem subject to max–product fuzzy relation equations

In this article, we study a class of posynomial geometric programming problem (PGPF), with the purpose of minimizing a posynomial subject to fuzzy relational equations with max–product composition. With the help of auxiliary variables, it is converted convert the PGPF into an equivalent programming problem whose objective function is a non-decreasing function with an auxiliary variable. Some pr...