Hadi Beitollahi

Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran

[ 1 ] - Synergistic Signal Amplification Based on Ionic Liquid-BaTiO3 Nanoparticle Carbon Paste Electrode for Sensitive Voltammetric Determination of Acetaminophen

Monitoring the acetaminophen in biological samples and also in pharmaceutical formulations is important due to the concerns of public health care and drug safety. In this work a carbon paste electrode modified with BaTiO3 nanoparticle (BTO NPs) and room-temperature ionic liquid (IL) (n-hexyl-3-methylimidazolium hexafluoro phosphate) was fabricated. The direct electro-oxidation behavior of aceta...

[ 2 ] - A New Sensor Based on Graphite Screen Printed Electrode Modified With Cu-Nanocomplex for Determination of Paracetamol

Paracetamol is a non-steroidal anti-inflammatory drug used as an antipyretic agent for the alternative to aspirin. Conversely, the overdoses of paracetamol can cause hepatic toxicity and kidney damage. Hence, the determination of paracetamol receives much more attention in biological samples and also in pharmaceutical formulations. Here, we report a rapid<span id="transmark" style="display: non...

[ 3 ] - Voltammetric determination of amitriptyline based on graphite screen printed electrode modified with a Copper Oxide nanoparticles

A novel electrochemical sensor was proposed for the determination of amitriptyline based on the copper oxide (CuO) nanoparticles modified graphite screen-printed electrode. CuO nanoparticles were used to enhance the surface area of the electrode and then improve the sensitivity of the electrochemical sensor. Amitriptyline electrochemical response characteristics of the modified electrode in a p...

[ 4 ] - Application of Graphene and Graphene Oxide for modification of electrochemical sensors and biosensors: A review

This paper gives a comprehensive review about the most recent progress in graphene and graphene oxide based electrochemical sensors and biosensors.  Graphene, emerging as a true 2-dimensional material, has received increasing attention due to its unique physicochemical properties (high surface area, excellent conductivity, high mechanical strength, and ease of functionalization and mass product...

[ 5 ] - An electrochemical acetaminophen sensor based on La3+/Co3O4 nanoflowers modified graphite screen printed electrode architecture

In this study, the La3+/Co3O4 nanoflowers were synthesized by co-precipitation method. The morphology of the La3+/Co3O4NFs were characterized using scanning electron microscopy (SEM), and were further used to modify the graphite screen printed electrode (GSPE). The electrochemical behavior of acetaminophen at La3+/Co<s...

[ 6 ] - Voltammetric determination of acetaminophen and tryptophan using a graphite screen printed electrode modified with functionalized graphene oxide nanosheets within a Fe3O4@SiO2 nanocomposite

A high sensitive electrochemical nanostructure sensor based on graphene oxide/Fe3O4@SiO2 nanocomposite modified graphite screen printed electrode (GO/Fe3O4@SiO2/SPE) has been developed for trace analysis of acetaminophen. The electrochemical study of the modified electrode, as well as its efficiency for simultaneous voltammetric oxidation of acetaminophen and tryptophan is described. Compared w...

[ 7 ] - Voltammetric determination of acetaminophen and tryptophan using a graphite screen printed electrode modified with functionalized graphene oxide nanosheets within a Fe3O4@SiO2 nanocomposite

A high sensitive electrochemical nanostructure sensor based on graphene oxide/Fe3O4@SiO2 nanocomposite modified graphite screen printed electrode (GO/Fe3O4@SiO2/SPE) has been developed for trace analysis of acetaminophen. The electrochemical study of the modified electrode, as well as its efficiency for simultaneous voltammetric oxidation of acetaminophen and tryptophan is described. Compared w...

[ 8 ] - Electrochemical behavior of Morphine at the surface of magnetic core shell manganese Ferrite nanoparticles modified screen printed electrode and its determination in real samples

In the present work, a new sensor for morphine (MO) measurement, based on modification of screen-printed carbon electrode (SPE) by using magnetic core shell manganese ferrite nanoparticles was reported. The electrochemical behaviour of MO was investigated in phosphate buffer solution (pH 7.0) by voltammetry. The electrochemical response of the modified electrode toward morphine was studied by m...

[ 9 ] - Application of Graphene and Graphene Oxide for modification of electrochemical sensors and biosensors: A review

This paper gives a comprehensive review about the most recent progress in graphene and graphene oxide based electrochemical sensors and biosensors.  Graphene, emerging as a true 2-dimensional material, has received increasing attention due to its unique physicochemical properties (high surface area, excellent conductivity, high mechanical strength, and ease of functionalization and mass product...

[ 10 ] - An electrochemical acetaminophen sensor based on La3+/Co3O4 nanoflowers modified graphite screen printed electrode architecture

In this study, the La3+/Co3O4 nanoflowers were synthesized by co-precipitation method. The morphology of the La3+/Co3O4NFs were characterized using scanning electron microscopy (SEM), and were further used to modify the graphite screen printed electrode (GSPE). The electrochemical behavior of acetaminophen at La3+/Co<s...

[ 11 ] - Voltammetric determination of amitriptyline based on graphite screen printed electrode modified with a Copper Oxide nanoparticles

A novel electrochemical sensor was proposed for the determination of amitriptyline based on the copper oxide (CuO) nanoparticles modified graphite screen-printed electrode. CuO nanoparticles were used to enhance the surface area of the electrode and then improve the sensitivity of the electrochemical sensor. Amitriptyline electrochemical response characteristics of the modified electrode in a p...

[ 12 ] - اندازه‌گیری مانگی‌فرین با استفاده از الکترود خمیر کربن اصلاح شده با مایع یونی و نانوذرات NiFe2O4

یک حسگر الکتروشیمیایی بسیار حساس بر اساس الکترود خمیر کربن اصلاح شده با مایع یونی و نانوذرات NiFe2O4 برای تعیین مانگی‌فرین ساخته شد. الکترود اصلاح شده فعالیت الکتروکاتالیستی بسیار خوبی را نسبت به اکسیداسیون مانگی‌فرین در محلول بافر فسفات (0/7pH=) نشان داد. برای بررسی واکنش الکتروشیمیایی مانگی‌فرین با الکترود اصلاح شده، ولتامتری چرخه‌ای (CV)، کرونوآمپرومتری (CHA) و ولتامتری پالس تفاضلی (DPV) مور...

[ 13 ] - DMOF-1 Assessment and Preparation to Electrochemically Determine Hydrazine in Different Water Samples

Hydrazine has been identified as a carcinogenic mutagenic, hepatotoxic, and neurotoxin material. A metal-organic framework with tetragonal symmetry, DMOF-1 (Zn2(bdc)2dabco) was synthesized by a versatile and facile technique, followed by its efficient development and validation as hydrazine electrochemical sensor. Differential pulse voltammetry (DPV), linear sweep voltammetry (LSV), and c...

[ 14 ] - Highly Electrocatalytic Oxidation of Bisphenol A at Glassy Carbon Electrode Modified with Metal-organic Framework MOF-508a and its Application in Real Sample Analysis

The use MOF-508a as sensing component for the precise discerning of bisphenol A via the electrochemical technique and its synthesis by a simple method were reported in the present study. Scanning electron microscopy (SEM) and x-ray diffraction (XRD) were applied to describe the MOF-508a’s composition and structure. In addition, MOF-508a was exploited so that the glassy carbon electrode could be...

[ 15 ] - A High Performance Electrochemical Sensor for Sulfite Based on MOWS₂ Nanocomposite Modified Electrode

The present study reports synthesis of MOWS2 nanocomposite followed by its characterization using energy dispersive X-ray spectroscopy (EDS), X-Ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). Chronoamperometry (CHA), differential pulse voltammetry (DPV), and cyclic voltammetry (CV) have been used to examine electro-chemical behaviors of sulfite on MOWS2...