نتایج جستجو برای: 4 term arithmetic progression
تعداد نتایج: 1989397 فیلتر نتایج به سال:
Let G be an abelian group, let S be a sequence of terms s1, s2, . . . , sn ∈ G not all contained in a coset of a proper subgroup of G, and let W be a sequence of n consecutive integers. Let W ̄ S = {w1s1 + . . . + wnsn : wi a term of W, wi 6= wj for i 6= j}, which is a particular kind of weighted restricted sumset. We show that |W ̄S| ≥ min{|G| − 1, n}, that W ̄ S = G if n ≥ |G| + 1, and also c...
Some patterns cannot be avoided ad infinitum. A well-known example of such a pattern is an arithmetic progression in partitions of natural numbers. We observed that in order to avoid arithmetic progressions, other patterns emerge. A visualization is presented that reveals these patterns. We capitalize on the observed patterns by constructing techniques to avoid arithmetic progressions. More for...
we obtain the asymptotic expansion of the sequence with general term $frac{a_n}{g_n}$, where $a_n$ and $g_n$ are the arithmetic and geometric means of the numbers $d(1),d(2),dots,d(n)$, with $d(n)$ denoting the number of positive divisors of $n$. also, we obtain some explicit bounds concerning $g_n$ and $frac{a_n}{g_n}$.
Let U (n) denote the maximal length arithmetic progression in a non-uniform random subset of {0, 1} n , where 1 appears with probability pn. By using dependency graph and Stein-Chen method, we show that U (n) − cn ln n converges in law to an extreme type distribution with ln pn = −2/cn. Similar result holds for W (n) , the maximal length aperiodic arithmetic progression (mod n). An arithmetic p...
In this paper, we investigate the anti-Ramsey (more precisely, anti-van der Waerden) properties of arithmetic progressions. For positive integers n and k, the expression aw([n], k) denotes the smallest number of colors with which the integers {1, . . . , n} can be colored and still guarantee there is a rainbow arithmetic progression of length k. We establish that aw([n], 3) = Θ(log n) and aw([n...
We study an extension of the triangle removal lemma of Ruzsa and Szemerédi [Triple systems with no six points carrying three triangles, Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely, 1976), Vol. II, NorthHolland, Amsterdam, 1978, pp. 939–945], which gave rise to a purely combinatorial proof of the fact that sets of integers of positive upper density contain three-term arithmetic progr...
Let p(n) denote the number of partitions of a non-negative integer n. A well-known conjecture asserts that every arithmetic progression contains infinitely many integers M for which p(M) is odd, as well as infinitely many integers N for which p(N) is even (see Subbarao [23]). In this paper we prove that there indeed are infinitely many integers N in every arithmetic progression for which p(N) i...
Let $\epsilon > 0$ be sufficiently small and let $0 < \eta 1/522$. We show that if $X$ is large enough in terms of $\epsilon$ then for any squarefree integer $q \leq X^{196/261-\epsilon}$ $X^{\eta}$-smooth one can obtain an asymptotic formula with power-saving error term the number integers arithmetic progression $a \pmod{q}$, $(a,q) = 1$. In case squarefree, smooth moduli this improves upon pr...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید