نتایج جستجو برای: automata groups
تعداد نتایج: 750045 فیلتر نتایج به سال:
Using holonomy decomposition, the absence of certain types of cycles in automata has been characterized. In the direction of studying the structure of automata with cycles, this paper focuses on a special class of semi-flower automata and establish the holonomy decomposition of certain circular semiflower automata. In particular, we show that the transformation monoid of a circular semi-flower ...
The first example of a non-residually finite group in the classes finitely presented small-cancelation groups, automatic and $\\operatorname{CAT}(0)$ groups was constructed by Wise as fundamental complete square complex (CSC for short) with twelve squares. At same time, Janzen proved that CSCs at most three, five or seven squares have residually group. smallest open cases were four directed $\\...
The decidability of the niteness problem for automaton groups is a well-studied open question on Mealy automata. We connect this question of algebraic nature to the periodicity problem of one-way cellular automata, a dynamical question known to be undecidable in the general case. We provide a rst undecidability result on the dynamics of one-way permutive cellular automata, arguing in favor of t...
In the 1980’s Stallings [35] showed that every finitely generated subgroup of a free group is canonically represented by a finite minimal immersion of a bouquet of circles. In terms of the theory of automata, this is a minimal finite inverse automaton. This allows for the deep algorithmic theory of finite automata and finite inverse monoids to be used to answer questions about finitely generate...
We introduce two series of finite automata starting from the socalled Aleshin and Bellaterra automata. We prove that each automaton in the first series defines a free non-Abelian group while each automaton in the second series defines the free product of groups of order 2. Furthermore, these properties are shared by disjoint unions of any number of distinct automata from either series.
We study iterated transductions defined by a class of invertible transducers over the binary alphabet. The transduction semigroups of these automata turn out to be free Abelian groups and the orbits of finite words can be described as affine subspaces in a suitable geometry defined by the generators of these groups. We show that iterated transductions are rational for a subclass of our automata.
We study iterated transductions defined by a class of inverse transducers over the binary alphabet. The transduction semigroups of these automata turn out to be free Abelian groups and the orbits of finite words can be described as affine subspaces in a suitable geometry defined by the generators of these groups. We show that iterated transductions are rational for a subclass of our automata.
We construct automata over a binary alphabet with 2n states, n ≥ 2, whose states freely generate a free group of rank 2n. Combined with previous work, this shows that a free group of every finite rank can be generated by finite automata over a binary alphabet. We also construct free products of cyclic groups of order two via such automata.
A complete description of the iterated monodromy groups of postcritically finite backward polynomial iterations is given in terms of their actions on rooted trees and automata generating them. We describe an iterative algorithm for finding kneading automata associated with post-critically finite topological polynomials and discuss some open questions about iterated monodromy groups of polynomials.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید