نتایج جستجو برای: bayes estimation

تعداد نتایج: 279029  

2006
Yoav Levinbook Tan F. Wong

The problem of state estimation with stochastic uncertainties in the initial state, model noise, and measurement noise is approached using the restricted risk Bayes approach. It is assumed that the a priori distributions of these quantities are not perfectly known but that some a priori information may be available. While offering robustness, the restricted risk Bayes approach incorporates the ...

2002
Yulan Liang King-Ip Lin Arpad Kelemen

We propose combining advanced statistical approaches with data mining techniques to build classifiers to enhance decision-making models for the job assignment problem. Adaptive Generalized Estimation Equation (AGEE) approaches with Gibbs sampling under Bayesian framework and adaptive Bayes classifiers based on the estimations of AGEE models which uses modified Naive Bayes algorithm are proposed...

Journal: :Proceedings of the ISCIE International Symposium on Stochastic Systems Theory and its Applications 2010

Journal: :Statistical Applications in Genetics and Molecular Biology 2014

2014
Cassandra M. Guarino Michelle Maxfield Jeffrey M. Wooldridge

Empirical Bayes' (EB) estimation is a widely used procedure to calculate teacher value-added. It is primarily viewed as a way to make imprecise estimates more reliable. In this paper we review the theory of EB estimation and use simulated data to study its ability to properly rank teachers. We compare the performance of EB estimators with that of other widely used value-added estimators under d...

2009
Bin Liu Ying Yang Geoffrey I. Webb Janice R. Boughton

Kernel density estimation (KDE) is an important method in nonparametric learning. While KDE has been studied extensively in the context of accuracy of density estimation, it has not been studied extensively in the context of classification. This paper studies nine bandwidth selection schemes for kernel density estimation in Naive Bayesian classification context, using 52 machine learning benchm...

2004
Harry Zhang Jiang Su

It is well-known that naive Bayes performs surprisingly well in classification, but its probability estimation is poor. In many applications, however, a ranking based on class probabilities is desired. For example, a ranking of customers in terms of the likelihood that they buy one’s products is useful in direct marketing. What is the general performance of naive Bayes in ranking? In this paper...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید