نتایج جستجو برای: bergman kernel
تعداد نتایج: 52451 فیلتر نتایج به سال:
In this paper we consider a class of weighted integral operators on L2(0,∞) and show that they are unitarily equivalent to little Hankel operators between weighted Bergman spaces of the right half plane. We use two parameters α, β ∈ (−1,∞) and involve two weights to define Bergman spaces of the domain and range of the little Hankel operators. We obtained conditions for the Hankel integral opera...
D |f(z)|dμ(z) )︀1/p < ∞ and by La(D, dμ) (or La(D) for short) the subspace of the space L(D) comprising the functions that are analytic on D. If p = 2, La(D) is a Hilbert subspace of L2(D) and it is called Bergman space. Let P denote the orthogonal projector of L2(D) on La(D) (Bergman projection). Let {δn}n=0 be defined by δn = (︀ 2π ∫︀ 1 0 r 2n+1w(r) dr )︀1/2 . Then, the sequence of functions ...
It is proved that quadrature domains are ubiquitous in a very strong sense in the realm of smoothly bounded multiply connected domains in the plane. In fact, they are so dense that one might as well assume that any given smooth domain one is dealing with is a quadrature domain, and this allows access to a host of strong conditions on the classical kernel functions associated to the domain. Foll...
We generalize several recent results concerning the asymptotic expansions of Bergman kernels to the framework of geometric quantization and establish an asymptotic symplectic identification property. More precisely, we study the asymptotic expansion of the G-invariant Bergman kernel of the spinc Dirac operator associated with high tensor powers of a positive line bundle on a symplectic manifold...
We give simple and unified proofs of weak holomorhpic Morse inequalities on complete manifolds, $q$-convex pseudoconvex domains, weakly $1$-complete manifolds covering manifolds. This paper is essentially based the asymptotic Bergman kernel functions Bochner-Kodaira-Nakano formulas.
We establish the existence of the asymptotic expansion of the Bergman kernel associated to the spin Dirac operators acting on high tensor powers of line bundles with non-degenerate mixed curvature (negative and positive eigenvalues) by extending [15]. We compute the second coefficient b1 in the asymptotic expansion using the method of [24].
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید