Here, we investigate symmetric bi-derivations and their generalizations on L? 0 (G)*. For k ? N, show that if B:L?0(G)*x L?0(G)* is asymmetric bi-derivation such [B(m,m),mk] Z(L?0(G)*) for all m (G)*, then B the zero map. Furthermore, characterize generalized biderivations group algebras. We also prove any Jordan 0(G)* a bi-derivation.