a normed space $mathfrak{x}$ is said to have the fixed point property, if for each nonexpansive mapping $t : e longrightarrow e $ on a nonempty bounded closed convex subset $ e $ of $ mathfrak{x} $ has a fixed point. in this paper, we first show that if $ x $ is a locally compact hausdorff space then the following are equivalent: (i) $x$ is infinite set, (ii) $c_0(x)$ is infinite dimensional, (...