نتایج جستجو برای: ctg repeat expansion
تعداد نتایج: 212195 فیلتر نتایج به سال:
Myotonic dystrophy type 1 (DM1) is a distal myopathy and a multisystem disease occurring with an incidence of 1/8000, as a result of a CTG trinucleotide repeat expansion in the serinetreonine-protein kinase (DMPK) coding gene on chromosome 19q13.3. In DM1 patients the length of the CTG expansion ranges from 50 to 4000. Disease severity correlates with repeat length and the phenomenon of genetic...
To analyse the influence of the sex of the transmitting grandparents on the occurrence of the congenital form of myotonic dystrophy (CDM), we have studied complete three generation pedigrees of 49 CDM cases, analysing: (1) the sex distribution in the grandparents' generation, and (2) the intergenerational amplification of the CTG repeat, measured in its absolute and relative values, between gra...
Expansions of trinucleotide repeats (TNRs) are the genetic cause for a number of neurodegenerative disorders. In some of these diseases, ongoing somatic expansions in the brain are thought to contribute to disease progression. Expansions can occur in both neurons and supporting glial cells, but little is known about molecular mechanisms of expansion in these cells, particularly glia. To help ad...
An increasing number of human genetic disorders are associated with the expansion of trinucleotide repeats. The majority of these diseases are associated with CAG/CTG expansions, including Huntington's disease, myotonic dystrophy and many of the spinocerebellar ataxias. Recently, two new expanded CAG/CTG repeats have been identified that are not associated with a phenotype. Expanded alleles at ...
Objectives. Presence of a factor-V Leiden mutation in a patient with myotonic dystrophy type 1 (DM1) has been reported only once. Here we report the second DM1 patient carrying a factor-V mutation who died from long-term complications of this mutation. Case Report. A 66-year-old DM1 patient with multi-organ-disorder syndrome developed a first deep venous thrombosis (DVT) and consecutive pulmona...
The primary genetic abnormality in myotonic dystrophy (DM) is an expansion of the CTG trinucleotide repeat on chromosome 19q. Recently, patients with similar clinical features, but without this genetic alteration, have been designated as proximal myotonic myopathy (PROMM). We describe two additional cases of PROMM, both of whom presented with clinical features suggestive of myotonic dystrophy. ...
Myotonic dystrophy type 1 (DM1) is a genetic disease caused by the pathological expansion of a CTG trinucleotide repeat in the 3' UTR of the DMPK gene. In the DMPK transcripts, the CUG expansions sequester RNA-binding proteins into nuclear foci, including transcription factors and alternative splicing regulators such as MBNL1. MBNL1 sequestration has been associated with key features of DM1. Ho...
PURPOSE Fuchs endothelial corneal dystrophy (FECD) is a progressive degenerative disease of the corneal endothelium. It is genetically heterogeneous and follows either an autosomal dominant or sporadic pattern of inheritance. Here, we have explored the association of four previously reported intronic single nucleotide polymorphisms and intronic CTG repeat expansions in TCF4 gene to FECD in an I...
CTG•CAG repeat expansions cause at least twelve inherited neurological diseases. Expansions require the presence, not the absence, of the mismatch repair protein MutSβ (Msh2-Msh3 heterodimer). To evaluate properties of MutSβ that drive expansions, previous studies have tested under-expression, ATPase function or polymorphic variants of Msh2 and Msh3, but in disparate experimental systems. Addit...
Trinucleotide repeat (TNR) expansions cause at least 17 heritable neurological diseases, including Huntington's disease. Expansions are thought to arise from abnormal processing of TNR DNA by specific trans-acting proteins. For example, the DNA repair complex MutSβ (MSH2-MSH3 heterodimer) is required in mice for on-going expansions of long, disease-causing alleles. A distinctive feature of TNR ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید