نتایج جستجو برای: entropy production minimization
تعداد نتایج: 697066 فیلتر نتایج به سال:
This paper investigates the application of error-entropy minimization algorithms to digital communications channel equalization. The pdf of the error between the training sequence and the output of the equalizer is estimated using the Parzen windowing method with a Gaussian kernel, and then, the Renyi’s quadratic entropy is minimized using a gradient descent algorithm. By estimating the Renyis ...
Minimization problems with respect to a one-parameter family of generalized relative entropies are studied. These relative entropies, which we term relative α-entropies (denoted Iα), arise as redundancies under mismatched compression when cumulants of compressed lengths are considered instead of expected compressed lengths. These parametric relative entropies are a generalization of the usual r...
In the present work, we develop a theoretical analysis to minimize the entropy generation of a thermo-electric cooler (TEC), which can be used to cool a processor. We have applied an analysis of first and second law of the Thermodynamics to a TEC. We consider the entropy generation equation as the objective function and the first law as a restriction, in accordance with the variational calculus...
In this paper we present a new training algorithm for the Long Short-Term Memory (LSTM) recurrent neural network. This algorithm uses entropy instead of the usual mean squared error as the cost function for the weight update. More precisely we use the Error Entropy Minimization approach, were the entropy of the error is minimized after each symbol is present to the network. Our experiments show...
Consider a de ned density on a set of very large dimension. It is quite di cult to nd an estimate of this density from a data set. However, it is possible through a projection pursuit methodology to solve this problem. In his seminal article, Huber (see "Projection pursuit", Annals of Statistics, 1985) demonstrates the interest of his method in a very simple given case. He considers the factori...
We consider the semi-supervised learning problem, where a decision rule is to be learned from labeled and unlabeled data. In this framework, we motivate minimum entropy regularization, which enables to incorporate unlabeled data in the standard supervised learning. Our approach includes other approaches to the semi-supervised problem as particular or limiting cases. A series of experiments illu...
This paper considers the minimization of a convex integral functional over the positive cone of an Lp space, subject to a finite number of linear equality constraints. Such problems arise in spectral estimation, where the objective function is often entropy-like, and in constrained approximation. The Lagrangian dual problem is finite-dimensional and unconstrained. Under a quasi-interior constra...
Given iid samples drawn from a distribution with known parametric form, we propose the minimization of expected Bregman divergence to form Bayesian estimates of differential entropy and relative entropy, and derive such estimators for the uniform, Gaussian, Wishart, and inverse Wishart distributions. Additionally, formulas are given for a log gamma Bregman divergence and the differential entrop...
Sparsity and entropy are pillar notions of modern theories in signal processing and information theory. However, there is no clear consensus among scientists on the characterization of these notions. Previous efforts have contributed to understand individually sparsity or entropy from specific research interests. This paper proposes a mathematical formalism, a joint axiomatic characterization, ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید