نتایج جستجو برای: g conjugacy classes
تعداد نتایج: 590637 فیلتر نتایج به سال:
We study the regularity of several languages derived from conjugacy classes in a finitely generated group G for a variety of examples including word hyperbolic, virtually abelian, Artin, and Garside groups. We also determine the rationality of the growth series of the shortlex conjugacy language in virtually cyclic groups, proving one direction of a conjecture of Rivin. 2010 Mathematics Subject...
We show that the Lusternik-Schnirelmann category of a simple, simply connected, compact Lie group G is bounded above by the sum of the relative categories of certain distinguished conjugacy classes in G corresponding to the vertices of the fundamental alcove for the action of the affine Weyl group on the Lie algebra of a maximal torus of G.
for $q in {7,8,9,11,13,16}$, we consider the primitive actions of $l_2(q)$ and use key-moori method 1 as described in [codes, designs and graphs from the janko groups {$j_1$} and{$j_2$}, {em j. combin. math. combin. comput.}, {bf 40} (2002) 143--159., correction to: ``codes, designs and graphs from the janko groups{$j_1$} and {$j_2$}'' [j. combin. math. combin. comput. {bf 40} (2002) 143--159],...
A group G has the R ? -property if for every ? ? Aut ( ) , there are an infinite number of -twisted conjugacy classes elements in . In this note, we determine = ? 1 M all geometric 3-manifolds
There are a few finite groups that are determined up to isomorphism solely by their order, such as $mathbb{Z}_{2}$ or $mathbb{Z}_{15}$. Still other finite groups are determined by their order together with other data, such as the number of elements of each order, the structure of the prime graph, the number of order components, the number of Sylow $p$-subgroups for each prime $p$, etc. In this...
Let $G$ be a tamely ramified reductive $p$-adic group. We study distinction of a class of irreducible admissible representations of $G$ by the group of fixed points $H$ of an involution of $G$. The representations correspond to $G$-conjugacy classes of pairs $(T,phi)$, where $T$ is a tamely ramified maximal torus of $G$ and $phi$ is a quasicharacter of $T$ whose restriction t...
We give a geometric proof based on recent work of Eskin, Fisher and Whyte that the lamplighter group Ln has infinitely many twisted conjugacy classes for any automorphism φ only when n is divisible by 2 or 3, originally proved by Gonçalves and Wong. We determine when the wreath product G o Z has this same property for several classes of finite groups G, including symmetric groups and some nilpo...
Abstract We prove that the number of conjugacy classes a finite group G consisting elements odd order, is larger than or equal to for normaliser Sylow 2-subgroup . This predicted by Alperin Weight Conjecture.
of distributions. The terms on the right are parametrized by "cuspidal automorphic data", and are defined in terms of Eisenstein series. They have been evaluated rather explicitly in [3]. The terms on the left are parametrized by semisimple conjugacy classes and are defined in terms of related G(A) orbits. The object of this paper is to evaluate these terms. In previous papers we have already e...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید