نتایج جستجو برای: generalized hyers ulam stability

تعداد نتایج: 461475  

2011
S. Shakeri

In this paper, the nonlinear stability of a functional equation in the setting of non-Archimedean normed spaces is proved. Furthermore, the interdisciplinary relation among the theory of random spaces, the theory of non-Archimedean space, the and the theory of functional equations are also presented Key word: Hyers Ulam Rassias stability • cubic mappings • generalized normed space • Banach spac...

2005
M. S. Moslehian

The generalized Hyers–Ulam–Rassias stability of adjointable mappings on Hilbert C∗-modules is investigated. As a corollary, we establish the stability of the equation f(x)∗y = xg(y)∗ in the context of C∗-algebras. We also prove that each approximately adjointable mapping is indeed adjointable.

Journal: :Int. J. Math. Mathematical Sciences 2006
Mohammad Sal Moslehian

One of the interesting questions in the theory of functional equations concerning the problem of the stability of functional equations is as follows: when is it true that a mapping satisfying a functional equation approximately must be close to an exact solution of the given functional equation? The first stability problem was raised by Ulam during his talk at the University of Wisconsin in 194...

2010
Soon-Mo Jung

The functional equation f(3x) = 4f(3x−3)+f(3x− 6) will be solved and its Hyers-Ulam stability will be also investigated in the class of functions f : R → X , where X is a real Banach space. Keywords—Functional equation, Lucas sequence of the first kind, Hyers-Ulam stability.

In this paper, we investigate the generalized Hyers-Ulam-Rassias and the Isac and Rassias-type stability of the conditional of orthogonally ring $*$-$n$-derivation and orthogonally ring $*$-$n$-homomorphism on $C^*$-algebras. As a consequence of this, we prove the hyperstability of orthogonally ring $*$-$n$-derivation and orthogonally ring $*$-$n$-homomorphism on $C^*$-algebras.

We prove the generalized Hyers--Ulam stability  of $n$-th order linear differential equation of the form $$y^{(n)}+p_{1}(x)y^{(n-1)}+ cdots+p_{n-1}(x)y^{prime}+p_{n}(x)y=f(x),$$ with condition that there exists a non--zero solution of corresponding homogeneous equation. Our main results extend and improve the corresponding results obtained by many authors.

Journal: :international journal of nonlinear analysis and applications 2010
c. park th. m. rassias

it is shown that every  almost linear bijection $h : arightarrow b$ of a unital $c^*$-algebra $a$ onto a unital$c^*$-algebra $b$ is a $c^*$-algebra isomorphism when $h(3^n u y) = h(3^n u) h(y)$ for allunitaries  $u in a$, all $y in a$, and all $nin mathbb z$, andthat almost linear continuous bijection $h : a rightarrow b$ of aunital $c^*$-algebra $a$ of real rank zero onto a unital$c^*$-algebra...

‎In this paper‎, ‎using fixed point method‎, ‎we prove the generalized Hyers-Ulam stability of‎ ‎random homomorphisms in random $C^*$-algebras and random Lie $C^*$-algebras‎ ‎and of derivations on Non-Archimedean random C$^*$-algebras and Non-Archimedean random Lie C$^*$-algebras for‎ ‎the following $m$-variable additive functional equation:‎ ‎$$sum_{i=1}^m f(x_i)=frac{1}{2m}left[sum_{i=1}^mfle...

2012
Claudia Zaharia

Using the fixed point method, we establish a generalized Ulam Hyers stability result for the monomial functional equation in the setting of complete random p-normed spaces. As a particular case, we obtain a new stability theorem for monomial functional equations in β-normed spaces.

2011
Abbas Najati Soon-Mo Jung

Under what conditions does there exist a group homomorphism near an approximate group homomorphism? This question concerning the stability of group homomorphisms was posed by Ulam 1 . The case of approximately additive mappings was solved by Hyers 2 on Banach spaces. In 1950 Aoki 3 provided a generalization of the Hyers’ theorem for additive mappings and in 1978 Th. M. Rassias 4 generalized the...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید