نتایج جستجو برای: graphene nanoribbons
تعداد نتایج: 51339 فیلتر نتایج به سال:
Bottom-up synthesis of low-bandgap graphene nanoribbons with various widths is of great importance for their applications in electronic and optoelectronic devices. Here we demonstrate a synthesis of N = 5 armchair graphene nanoribbons (5-AGNRs) and their lateral fusion into wider AGNRs, by a chemical vapor deposition method. The efficient formation of 10- and 15-AGNRs is revealed by a combinati...
We have investigated the reconstruction, electronic and magnetic properties of graphene nanoribbons using density functional theory structure optimization and electronic structure calculations. In order to obtain proper edge states and their spin polarizations, we generate wide enough edge hydrogenated graphene nanoribbons that have not only mostly considered armchair and zigzag geometries both...
We present an infrared transmission spectroscopy study of the inter-Landau-level excitations in quasineutral epitaxial graphene nanoribbon arrays. We observed a substantial deviation in energy of the L(0(-1)) → L(1(0)) transition from the characteristic square root magnetic-field dependence of two-dimensional graphene. This deviation arises from the formation of an upper-hybrid mode between the...
Change in the bonding environment at the free edges of graphene monolayer leads to excess edge energy and edge force, depending on the edge morphology zigzag or armchair . By using a reactive empirical bond-order potential and atomistic simulations, we show that the excess edge energy in free-standing graphene nanoribbons can be partially relaxed by both in-plane and out-of-plane deformation. T...
Since the isolation of graphene in 2004, this novel material has become the major object of modern condensed matter physics. Despite of enormous research activity in this field, there are still a number of fundamental phenomena that remain unexplained and challenge researchers for further investigations. Moreover, due to its unique electronic properties, graphene is considered as a promising ca...
The usefulness of graphene for electronics has been limited because it does not have an energy bandgap. Although graphene nanoribbons have non-zero bandgaps, lithographic fabrication methods introduce defects that decouple the bandgap from electronic properties, compromising performance. Here we report direct measurements of a large intrinsic energy bandgap of approximately 50 meV in nanoribbon...
We analyze localization of light in honeycomb photonic lattices restricted in one dimension, which can be regarded as an optical analog of graphene nanoribbons. We discuss the effect of lattice topology on the properties of discrete solitons excited inside the lattice and at its edges. We discuss a type of soliton bistability, geometry-induced bistability, in the lattices of a finite extent.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید