نتایج جستجو برای: imbalanced classes
تعداد نتایج: 162059 فیلتر نتایج به سال:
Reliability of software counts on its fault-prone modules. This means that the less software consists of fault-prone units the more we may trust it. Therefore, if we are able to predict the number of fault-prone modules of software, it will be possible to judge the software reliability. In predicting software fault-prone modules, one of the contributing features is software metric by which one ...
It is difficult for learning models to achieve high classification performances with imbalanced data sets, because with imbalanced data sets, when one of the classes is much larger than the others, most machine learning and data mining classifiers are overly influenced by the larger classes and ignore the smaller ones. As a result, the classification algorithms often have poor learning performa...
Imbalanced classification is related to those problems that have an uneven distribution among classes. In addition to the former, when instances are located into the overlapped areas, the correct modeling of the problem becomes harder. Current solutions for both issues are often focused on the binary case study, as multi-class datasets require an additional effort to be addressed. In this resea...
The paper presents two rough sets based filtering approaches combined with rule based classifiers suited for handling imbalanced data sets, i.e., data sets where the minority class of primary importance is under-represented in comparison to the majority classes. We introduced two techniques to detect and process inconsistent majority cases in the boundary between the minority and majority class...
Text categorization or classification is the automated assigning of text documents to pre-defined classes based on their contents. Many of classification algorithms usually assume that the training examples are evenly distributed among different classes. However, unbalanced data sets often appear in many practical applications. In order to deal with uneven text sets, we propose the neighbor-wei...
Multi-class imbalanced classification is more difficult than its binary counterpart. Besides typical data difficulty factors, one should also consider the complexity of relations among classes. This paper introduces a new method for examining the characteristics of multi-class data. It is based on analyzing the neighbourhood of the minority class examples and on additional information about sim...
Class imbalance is one of the challenging problems for machine learning in many real-world applications. Many methods have been proposed to address and attempt to solve the problem, including sampling and cost-sensitive learning. The latter has attracted significant attention in recent years to solve the problem, but it is difficult to determine the precise misclassification costs in practice. ...
In this contribution, we study the influence of an Evolutionary Adaptive Inference System with parametric conjunction operators for Fuzzy Rule Based Classification Systems. Specifically, we work in the context of highly imbalanced data-sets, which is a common scenario in real applications, since the number of examples that represents one of the classes of the data-set (usually the concept of in...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید