نتایج جستجو برای: k tuple total restrained domination number
تعداد نتایج: 2141912 فیلتر نتایج به سال:
Let D be a minimum secure restrained dominating set of a graph G = (V, E). If V – D contains a restrained dominating set D' of G, then D' is called an inverse restrained dominating set with respect to D. The inverse restrained domination number γr(G) of G is the minimum cardinality of an inverse restrained dominating set of G. The disjoint restrained domination number γrγr(G) of G is the minimu...
The domination multisubdivision number of a nonempty graph G was defined in [3] as the minimum positive integer k such that there exists an edge which must be subdivided k times to increase the domination number of G. Similarly we define the total domination multisubdivision number msdγt(G) of a graph G and we show that for any connected graph G of order at least two, msdγt(G) ≤ 3. We show that...
let $r$ be a commutative ring and $m$ be an $r$-module with $t(m)$ as subset, the set of torsion elements. the total graph of the module denoted by $t(gamma(m))$, is the (undirected) graph with all elements of $m$ as vertices, and for distinct elements $n,m in m$, the vertices $n$ and $m$ are adjacent if and only if $n+m in t(m)$. in this paper we study the domination number of $t(ga...
A {em Roman dominating function} on a graph $G$ is a function $f:V(G)rightarrow {0,1,2}$ satisfying the condition that every vertex $u$ for which $f(u)=0$ is adjacent to at least one vertex $v$ for which $f(v)=2$. A {em total Roman dominating function} is a Roman dominating function with the additional property that the subgraph of $G$ induced by the set of all vertices of positive weight has n...
In a graph G, a vertex dominates itself and its neighbors. A subset S of V is called a dominating set in G if every vertex in V-S is adjacent to at least one vertex in S. The minimum cardinality taken over all, the minimal double dominating set which is called Fuzzy Double Domination Number and which is denoted as ) (G fdd . A set V S is called a Triple dominating set of a graph G if every ...
In a graph G = (V,E) a vertex is said to dominate itself and all its neighbours. A weak dominating set is a set S ⊆ V where for every vertex u not in S there is a vertex v of S adjacent to u with dG(v) 6 dG(u) . A restrained dominating set is a set S ⊆ V where every vertex in V − S is adjacent to a vertex in S as well as another vertex in V − S . The weak domination number γw(G) (resp. restrain...
a set $s$ of vertices in a graph $g=(v,e)$ is called a total$k$-distance dominating set if every vertex in $v$ is withindistance $k$ of a vertex in $s$. a graph $g$ is total $k$-distancedomination-critical if $gamma_{t}^{k} (g - x) < gamma_{t}^{k}(g)$ for any vertex $xin v(g)$. in this paper,we investigate some results on total $k$-distance domination-critical of graphs.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید