نتایج جستجو برای: means clustering
تعداد نتایج: 438049 فیلتر نتایج به سال:
Recently, [3] introduced an SDP relaxation of the k-means problem in R. In this work, we consider a random model for the data points in which k balls of unit radius are deterministically distributed throughout R, and then in each ball, n points are drawn according to a common rotationally invariant probability distribution. For any fixed ball configuration and probability distribution, we prove...
K-means clustering algorithm has been used to classify patterns of Japanese candlesticks which accompany the prices of several assets registered in the Warsaw stock exchange (GPW). It has been found that the trend reversals seem to be preceded by specific combinations of candlesticks with notable frequency. Surprisingly, the same patterns appear in both bullish and bearish trend reversals. The ...
A method for the initialisation step of clustering algorithms is presented. It is based on the concept of cluster as a high density region of points. The search space is modelled as a set of d-dimensional cells. A sample of points is chosen and located into the appropriate cells. Cells are iteratively split as the number of points they receive increases. The regions of the search space having a...
We study the problem of estimating a manifold from random samples. In particular, we consider piecewise constant and piecewise linear estimators induced by k-means and k-flats, and analyze their performance. We extend previous results for k-means in two separate directions. First, we provide new results for k-means reconstruction on manifolds and, secondly, we prove reconstruction bounds for hi...
Area of classifying satellite imagery has become a challenging task in current era where there is tremendous growth in settlement i.e. construction of buildings, roads, bridges, dam etc. This paper suggests an improvised k-means and Artificial Neural Network (ANN) classifier for land-cover mapping of Eastern Himalayan state Sikkim. The improvised k-means algorithm shows satisfactory results com...
This paper deals with lidar point cloud filtering and classification for modelling the Terrain and more generally for scene segmentation. In this study, we propose to use the well-known K-means clustering algorithm that filters and segments (point cloud) data. The Kmeans clustering is well adapted to lidar data processing, since different feature attributes can be used depending on the desired ...
TAMPERE UNIVERSITY OF TECHNOLOGY Master’s Degree Program in Information Technology Ranganathan, Sindhuja: Improvements to k-means clustering Master’s thesis, 42 November 2013 Major Subject: Software Systems Examiner(s): Professor Tapio Elomaa
The -means algorithm is by far the most widely used method for discovering clusters in data. We show how to accelerate it dramatically, while still always computing exactly the same result as the standard algorithm. The accelerated algorithm avoids unnecessary distance calculations by applying the triangle inequality in two different ways, and by keeping track of lower and upper bounds for dist...
This paper addresses the construction of a short-vector (128D) image representation for large-scale image and particular object retrieval. In particular, the method of joint dimensionality reduction of multiple vocabularies is considered. We study a variety of vocabulary generation techniques: different k-means initializations, different descriptor transformations, different measurement regions...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید