نتایج جستجو برای: moo3g c3n4
تعداد نتایج: 1225 فیلتر نتایج به سال:
Hydrogen is a great sourcez of energy due to having zero emission carbon-based contents. It found primarily in water, which abundant and renewable. For electrochemical splitting water molecules, it necessary use catalytic materials that minimize consumption. As famous carbon material, graphitic nitride, with its excellent physicochemical properties diversified functionalities, presents potentia...
A porous hybrid g-C3N4/RGO (CNRG) material has been fabricated through a facile hydrothermal process with the help of glucose molecules, and serves as an efficient immobilization substrate to support ultrathin Ni(OH)2 nanosheets under an easy precipitation process. It was found that the g-C3N4 flakes can uniformly coat on both sides of the RGO, forming sandwich-type composites with a hierarchic...
An efficient membrane for helium separation from natural gas is quite crucial for cryogenic industries. However, most experimentally available membranes fail in separating helium from small molecules in natural gas, such as H2, as well as in 3He/4He isotopes separation. Using first-principles calculations, we theoretically demonstrated that the already-synthesized graphitic carbon nitride (g-C3...
A novel graphitic carbon nitride (g-C3N4)-CaTiO3 (CTCN) organic-inorganic heterojunction photocatalyst was synthesized by a facile mixing method, resulting in the deposition of CaTiO3 (CT) nanoflakes onto the surface of g-C3N4 nanosheets. The photocatalytic activity of the as-synthesized heterojunction (along with the controls) was evaluated by studying the degradation of an aqueous solution of...
Graphitic carbon nitride (g-C3N4) used in this work was obtained by heating dicyandiamide and melamine, respectively, at different temperatures. The differences of g-C3N4 derived from different precursors in phase composition, functional group, surface morphology, microstructure, surface property, band gap and specific surface area were investigated by X-ray diffraction, Fourier transform infra...
The design of heterojunctions for efficient electrochemical energy storage and environmental remediation are promising for future energy and environment applications. In this study, a molybdenum disulfide-graphitic carbon nitride (MoS2-g-C3N4) heterojunction was designed by applying simple mechanochemistry, which can be scaled up for mass production. The physical-chemical and photophysical prop...
A noble-metal-free photocatalytic H2 production system consisting of a Ni-based catalyst, visible-light-responsive organic dye, and graphitic carbon nitride (g-C3N4) as a support has been developed. Characterization by means of XAFS revealed that the deposition of a trinuclear Ni precursor complex, Ni(NiL2)2Cl2 (L = β-mercaptoethylamine), on the g-C3N4 affords a monomeric Ni(ii) species involvi...
Two-dimensional porous nanosheet heterostructure materials, which combine the advantages of both architecture and components, are expected to feature a significant photocatalytic performance toward CO2 conversion into useful fuels. Herein, we provide facile strategy for fabricating sulfur-doped C3N4 nanosheets with embedded SnO2-SnS2 nanojunctions (S-C3N4/SnO2-SnS2) via liquid impregnation-pyro...
Successful synthesis of the stable metal-free two-dimensional polymer graphitic carbon-nitride with remarkable properties has made it as one of the most promising nanostructures in many novel nanodevices, especially photocatalytic ones. Understanding the mechanical properties of nanostructures is of crucial importance. Thus, this study employs density functional theory (DFT) to obtain the mecha...
Structure elucidation of a condensed carbon(IV) nitride with a stoichiometry close to C3N4 by electron diffraction reveals a two-dimensional planar heptazine-based network containing isolated melamine molecules in the trigonal voids.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید