نتایج جستجو برای: powerset operators
تعداد نتایج: 99278 فیلتر نتایج به سال:
This paper explores the set theoretic assumptions used in the current published proof of Fermat’s Last Theorem, how these assumptions figure in the methods Wiles uses, and the currently known prospects for a proof using weaker assumptions. Does the proof of Fermat’s Last Theorem (FLT) go beyond Zermelo Fraenkel set theory (ZFC)? Or does it merely use Peano Arithmetic (PA) or some weaker fragmen...
It is shown how Lawvere’s one-to-one translation between Birkhoff’s description of varieties and the categorical one (see [6]) turns Hu’s theorem on varieties generated by a primal algebra (see [4], [5]) into a simple reformulation of the classical representation theorem of finite Boolean algebras as powerset algebras.
Papert Strauss (Proc. London Math. Soc. 18(3), 217–230, 1968) used Pontryagin duality to prove that a compact Hausdorff topological Boolean algebra is a powerset algebra. We give a more elementary proof of this result that relies on a version of Bogolyubov’s lemma.
Lax monoidal powerset-enriched monads yield a monoidal structure on the category of monoids in the Kleisli category of a monad. Exponentiable objects in this category are identified as those Kleisli monoids with algebraic structure. This result generalizes the classical identification of exponentiable topological spaces as those whose lattice of open subsets forms a continuous lattice.
We analyze structure theories of the power-set of ω1 and compare them relative to Cantor’s Continuum Problem. We also compare these theories with the structure theory of the powerset of ω under the assumption of the axiom of definable determinacy.
Query generalization is one option to implement flexible query answering. In this paper, we introduce a generalization operator (called powerset-AI) that extends conventional Anti-Instantiation (AI). We analyze structural modifications imposed by the generalization to obtain syntactic similarity measures (based on the star feature) that rank generalized queries with regard to their closeness to...
Hereditarily finite (HF) set theory provides a standard universe of sets, but with no infinite sets. Its utility is demonstrated through a formalisation of the theory of regular languages and finite automata, including the Myhill-Nerode theorem and Brzozowski’s minimisation algorithm. The states of an automaton are HF sets, possibly constructed by product, sum, powerset and similar operations.
Multirelations provide a semantic domain for computing systems that involve two dual kinds of nondeterminism. This paper presents relational formalisations of Kleisli, Parikh and Peleg compositions and liftings of multirelations. These liftings are similar to those that arise in the Kleisli category of the powerset monad. We show that Kleisli composition of multirelations is associative, but ne...
In this paper we give an explicit construction of n × n matrices over finite fields which are somewhat rigid, in that if we change at most k entries in each row, its rank remains at least Cn(logq k)/k, where q is the size of the field and C is an absolute constant. Our matrices satify a somewhat stronger property, we which explain and call “strong rigidity.” We introduce and briefly discuss str...
domains (§3.3) are often complete lattices, i.e., algebras over partially ordered sets. We recall in this section the fundamental notions of lattice theory, which are the basis for the soundness of over-approximations of reachable state sets computed by abstract interpretation methods. For further details and proofs we refer to textbooks on lattice theory [DP90] and static analysis [NNH05]. Fro...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید