نتایج جستجو برای: radial basis function neural networks

تعداد نتایج: 2125820  

2017

A Radial Basis Function ( RBF ) neural network can be regarded as a feed forward network composed of multiple layers of neurons with entirely different roles. The input layer made of sensory units that connect the network to its environment. A radial basis function neural network depends mainly upon an adequate choice of the number and positions of its basis function centers. In case of general...

2017

A Radial Basis Function ( RBF ) neural network can be regarded as a feed forward network composed of multiple layers of neurons with entirely different roles. The input layer made of sensory units that connect the network to its environment. A radial basis function neural network depends mainly upon an adequate choice of the number and positions of its basis function centers. In case of general...

Journal: :international journal of environmental research 0

the application of neural networks to model a laboratory scale inverse fluidized bed reactor has been studied. a radial basis function neural network has been successfully employed for the modeling of the inverse fluidized bed reactor. in the proposed model, the trained neural network represents the kinetics of biological decomposition of organic matters in the reactor. the neural network has b...

2006
Kwang-Baek Kim Suhyun Park

The judgment of forged passports plays an important role in the immigration control system and requires the automatic recognition of passports as the pre-phase processing. This paper, for the recognition of passports, proposed a novel method using the enhanced RBF network based on ART2. The proposed method extracts code sequence blocks and individual codes by applying the Sobel masking, the sme...

1998
Sunyoung Lee Sungzoon Cho Patrick M. Wong

The spatial interpolation comparison 97 is concerned with predicting the daily rainfall at 367 locations based on the daily rainfall at nearby 100 locations in Switzerland. We propose a divide -and-conquer approach where the whole region is divided into four sub-areas and each is modeled with a different method. Predictions in two larger areas were made by RBF networks based on the locational i...

2011
Hai-Gen Hu Li-Hong Xu Rui-Hua Wei

This paper presents a model reference adaptive PD control scheme based on RBF neural network for the greenhouse climate control problem. A model of nonlinear conservation laws of enthalpy and matter between numerous system variables affecting the greenhouse climate is used to validate the proposed control scheme. Compared with the conventional adaptive PD control scheme based on RBF neural netw...

2001
M. Önder Efe Okyay Kaynak Xinghuo Yu Bogdan M. Wilamowski

In this paper, a novel method for driving the dynamics of a nonlinear system to a sliding mode is discussed. The approach is based on a sliding mode control methodology, i.e., the system under control is driven towards a sliding mode by tuning the parameters of the controller. In this loop, the parameters of the controller are adjusted such that a zero learning error level is reached in one dim...

2010
Hyontai Sug

Radial basis function networks are known to have good performance compared to other artificial neural networks like multilayer perceptrons. Because the size of target data sets in data mining is very large and artificial neural networks including radial basis function networks require intensive computing, sampling is needed. So, because the sample size should be relatively small due to computat...

2014
T. Sivaprakasam P. Dhanalakshmi

Abstract— In a reverberant environment, the performance of acoustic event recognition system can be bolstered by choosing appropriate feature descriptors and classifier techniques. Neural networks are by far providing stunning classification results when compared to other classifiers. This paper analyses two different neural networks and their precision when they both stumble upon same targets ...

2006
Alberto Guillén Ignacio Rojas Jesús González Héctor Pomares Luis Javier Herrera Alberto Prieto

This paper presents a new approach to the problem of designing Radial Basis Function Neural Networks (RBFNNs) to approximate a given function. The presented algorithm focuses in the first stage of the design where the centers of the RBFs have to be placed. This task has been commonly solved by applying generic clustering algorithms although in other cases, some specific clustering algorithms we...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید