نتایج جستجو برای: seidel signless laplacian matrix
تعداد نتایج: 375920 فیلتر نتایج به سال:
Let G be a k-degenerate graph of order n. It is well-known that G has no more edges than Sn,k, the join of a complete graph of order k and an independent set of order n−k. In this note, it is shown that Sn,k is extremal for some spectral parameters of G as well. More precisely, letting μ (H) and q (H) denote the largest eigenvalues of the adjacency matrix and the signless Laplacian of a graph H...
Abstract. Let G be a k-degenerate graph of order n. It is well-known that G has no more edges than Sn,k, the join of a complete graph of order k and an independent set of order n−k. In this note, it is shown that Sn,k is extremal for some spectral parameters of G as well. More precisely, letting μ (H) and q (H) denote the largest eigenvalues of the adjacency matrix and the signless Laplacian of...
The eccentricity of a vertex is the maximum distance from it to another vertex and the average eccentricity ecc (G) of a graph G is the mean value of eccentricities of all vertices of G. The harmonic index H (G) of a graph G is defined as the sum of 2 di+dj over all edges vivj of G, where di denotes the degree of a vertex vi in G. In this paper, we determine the unique tree with minimum average...
, where deg(vi) is the sum of weights of all edges connected to vi. The signless Laplacian matrix Q(G) is defined by D(G) + A(G). We denote by 0 = λ1(G) ≤ λ2(G) ≤ · · · ≤ λn(G) the eigenvalues of L(G), and by μ1(G) ≤ μ2(G) ≤ · · · ≤ μn(G) the eigenvalues of Q(G). We order the degrees of the vertices of G as d1(G) ≤ d2(G) ≤ · · · ≤ dn(G). Various bounds for the Laplacian eigenvalues of unweighte...
In this paper, we show that the eigenvectors associated with the zero eigenvalues of the Laplacian and signless Lapacian tensors of a k-uniform hypergraph are closely related to some configured components of that hypergraph. We show that the components of an eigenvector associated with the zero eigenvalue of the Laplacian or signless Lapacian tensor have the same modulus. Moreover, under a cano...
In this paper, we show that the eigenvectors of the zero Laplacian and signless Lapacian eigenvalues of a k-uniform hypergraph are closely related to some configured components of that hypergraph. We show that the components of an eigenvector of the zero Laplacian or signless Lapacian eigenvalue have the same modulus. Moreover, under a canonical regularization, the phases of the components of t...
The spectral radius (or the signless Laplacian radius) of a general hypergraph is maximum modulus eigenvalues its adjacency Laplacian) tensor. In this paper, we firstly obtain lower bound hypergraphs in terms clique number. Moreover, present relation between homogeneous polynomial and number hypergraphs. As an application, finally upper
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید