If X is a locale, then its double powerlocale PX is defined to be PU(PL(X)) where PU and PL are the upper and lower powerlocale constructions. We prove various results relating it to exponentiation of locales, including the following. First, if X is a locale for which the exponential S exists (where S is the Sierpinski locale), then PX is an exponential S X . Second, if in addition W is a local...