نتایج جستجو برای: sinorhizobium
تعداد نتایج: 1682 فیلتر نتایج به سال:
We determined the sequences for a 260-base segment amplified by the polymerase chain reaction (corresponding to positions 44 to 337 in the Escherichia coli 16s rRNA sequence) from seven strains of fast-growing soybean-nodulating rhizobia (including the type strains of Rhizobium fredii chemovar fredii, Rhizobium fredii chemovar siensis, Sinorhizobium fredii, and Sinorhizobium xinjiangensis) and ...
Post-transcriptional regulation by trans-encoded sRNAs, for example via base-pairing with target mRNAs, is a common feature in bacteria and influences various cell processes, e.g., response to stress factors. Several studies based on computational and RNA-seq approaches identified approximately 180 trans-encoded sRNAs in Sinorhizobium meliloti. The initial point of this report is a set of 52 tr...
Sulfate modification on Rhizobium Nod factor signaling molecules is not a prerequisite for successful symbiosis with the common bean (Phaseolus vulgaris L.). However, many bean-nodulating rhizobia, including the broad host strain Sinorhizobium sp. BR816, produce sulfated Nod factors. Here, we show that the nodH gene, encoding a sulfotransferase, is responsible for the transfer of sulfate to the...
The symbiotic nitrogen-fixing bacterium Sinorhizobium meliloti harbors a gene, SMc02396, which encodes a predicted outer membrane porin that is conserved in many symbiotic and pathogenic bacteria in the order Rhizobiales. Here, this gene (renamed ropA1) is shown to be required for infection by two commonly utilized transducing bacteriophages (ΦM12 and N3). Mapping of S. meliloti mutations confe...
Sinorhizobium meliloti hpdA, which encodes the herbicide target 4-hydroxyphenylpyruvate dioxygenase, is positively regulated by HpdR. Gel mobility shift and DNase I footprinting analyses revealed that HpdR binds to a region that spans two conserved direct-repeat sequences within the hpdR-hpdA intergenic space. HpdR-dependent hpdA transcription occurs in the presence of 4-hydroxyphenylpyruvate, ...
Employing a novel two-part screen, we identified Sinorhizobium meliloti mutants that were both sensitive to hydrogen peroxide and symbiotically defective on the host plant Medicago sativa. The mutations affect a wide variety of cellular processes and represent both novel and previously identified genes important in symbiosis.
In bacteria, the production of exopolysaccharides--polysaccharides secreted by the cells into their growth medium--is integral to the formation of aggregates and biofilms. These exopolysaccharides often form part of a matrix that holds the cells together. Investigating the bacterium Sinorhizobium meliloti, we found that a mutant that overproduces the exopolysaccharide succinoglycan showed enhan...
The type IV secretion system (T4SS) of the plant intracellular symbiont Sinorhizobium meliloti 1021 is required for conjugal transfer of DNA. However, it is not required for host invasion and persistence, unlike the T4SSs of closely related mammalian intracellular pathogens. A comparison of the requirement for a bacterial T4SS in plant versus animal host invasion suggests an important differenc...
Rhizobial bacteria form symbiotic, nitrogen-fixing nodules on the roots of compatible host legume plants. One of the most well-developed model systems for studying these interactions is the plant Medicago truncatula cv. Jemalong A17 and the rhizobial bacterium Sinorhizobium meliloti 1021. Repeated imaging of plant roots and scoring of symbiotic phenotypes requires methods that are non-destructi...
Sinorhizobium meliloti (Rhizobium meliloti) 2011 has the ability to produce the two acidic exopolysaccharides succinoglycan (EPS I) and galactoglucan (EPS II). EPS I is a branched heteropolysaccharide composed of octasaccharide repeating units, whereas EPS II is a linear heteropolysaccharide consisting of disaccharide subunits. The exo-exs and exp gene clusters are involved in the biosynthesis ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید