نتایج جستجو برای: triple walled zno piezoelectric
تعداد نتایج: 95482 فیلتر نتایج به سال:
Utilizing the coupled piezoelectric and semiconducting dual properties of ZnO, we demonstrate a piezoelectric field effect transistor (PE-FET) that is composed of a ZnO nanowire (NW) (or nanobelt) bridging across two Ohmic contacts, in which the source to drain current is controlled by the bending of the NW. A possible mechanism for the PE-FET is suggested to be associated with the carrier trap...
We have investigated the effects of different p-type polymer layers on the piezoelectric potential from ZnO nanowire (NWs) grown on silver (Ag) coated silicon (Si) substrate by the low temperature chemical synthesis method. Piezoelectric measurement was done by a conductive atomic force microscope (AFM). In the case of the poly(3,4ethylenedioxythiophene-Tosylate (PEDOT-Tos), the output voltage ...
We demonstrate an organic/inorganic hybrid energy-harvesting platform, based on nanostructured piezolelectric arrays embedded in an environmental-responsive polymer matrix, which can self-generate electrical power by scavenging energy from the environment. A proof of principle device is designed, fabricated, and tested using vertically aligned ZnO nanowires and heat as the local energy source. ...
In this work we report on the fabrication process for the development of a flexible piezopolymeric transducer for health monitoring applications, based on lead-free, piezoelectric zinc oxide (ZnO) thin films. All the selected materials are compatible with the space environment and were deposited by the RF magnetron sputtering technique at room temperature, in view of preserving the total flexib...
ZnO films were coated on the order of micrometer thickness on various substrates using RF magnetron sputtering. Glass, mica and Si were used as amorphous and crystalline substrates to study film growth. X-ray diffraction measurements revealed a self-induced, (002) oriented texture on all substrates. Effects of residual stresses on growth behavior and possible mechanisms of textured crystallizat...
Nanotechnology is emerging to be one of the most important scientific disciplines that physics, chemistry and biology truly overlap with each other. Over the last two decades science and technology have witnessed tremendous improvement in the hope of unveiling the true secrets of the nature in molecular or atomic level. Today, the regime of nanometer is truly reached. ZnO is a promising materia...
ZnO is one of the most promising materials since it has a high mechanical and thermal stability, and wide band gap (3.37 eV). Meanwhile, doping with selective elements offers an effective method to enhance and control the electrical and optical properties of ZnO nanostructures, which is crucial for its practical applications. Mg-doped ZnO have considerable interests owing to their unique optica...
A simple and versatile approach has been developed to synthesize multi-walled carbon nanotubes/metal-doped ZnO nanohybrid materials (MWNT/M-doped ZnO) by means of the co-deposition method. The experimental results illuminate that MWNTs can be modified by metal-doped ZnO nanoparticles at 450 °C, such as Mn, Mg, and Co elements. Furthermore, the MWNT/Mg-doped ZnO hybrids have been proven to have ...
We propose a new 1–3 piezoelectric composite comprised of armchair single-walled carbon nanotubes imbedded in a piezoceramic matrix which we call a NRPEC (nanotube reinforced 1–3 piezoelectric composite). Values of effective piezoelectric and elastic moduli of the NRPEC determined through a micromechanical analysis are found to be significantly higher than those of the 1–3 piezoelectric composi...
The output of a piezoelectric nanogenerator (NG) fabricated using ZnO nanowire arrays is largely influenced by the density of the surface charge carriers at the nanowire surfaces. Adsorption of gas molecules could modify the surface carrier density through a screening effect, thus, the output of the NG is sensitive to the gas concentration. Based on such a mechanism, we first studied the respon...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید